1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HEAL.Attic;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Problems.GeneralizedQuadraticAssignment;
|
---|
33 | using HeuristicLab.Random;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Analysis.FitnessLandscape {
|
---|
36 | [Item("Directed Walk (GQAP-specific)", "")]
|
---|
37 | [StorableType("333209A4-8EE7-4944-8A23-CBF120627DBE")]
|
---|
38 | public class GQAPDirectedWalk : CharacteristicCalculator {
|
---|
39 |
|
---|
40 | public IFixedValueParameter<IntValue> PathsParameter {
|
---|
41 | get { return (IFixedValueParameter<IntValue>)Parameters["Paths"]; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public IFixedValueParameter<BoolValue> BestImprovementParameter {
|
---|
45 | get { return (IFixedValueParameter<BoolValue>)Parameters["BestImprovement"]; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public IValueParameter<IntValue> SeedParameter {
|
---|
49 | get { return (IValueParameter<IntValue>)Parameters["Seed"]; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | public IFixedValueParameter<BoolValue> LocalOptimaParameter {
|
---|
53 | get { return (IFixedValueParameter<BoolValue>)Parameters["LocalOptima"]; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | public int Paths {
|
---|
57 | get { return PathsParameter.Value.Value; }
|
---|
58 | set { PathsParameter.Value.Value = value; }
|
---|
59 | }
|
---|
60 |
|
---|
61 | public bool BestImprovement {
|
---|
62 | get { return BestImprovementParameter.Value.Value; }
|
---|
63 | set { BestImprovementParameter.Value.Value = value; }
|
---|
64 | }
|
---|
65 |
|
---|
66 | public int? Seed {
|
---|
67 | get { return SeedParameter.Value != null ? SeedParameter.Value.Value : (int?)null; }
|
---|
68 | set { SeedParameter.Value = value.HasValue ? new IntValue(value.Value) : null; }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public bool LocalOptima {
|
---|
72 | get { return LocalOptimaParameter.Value.Value; }
|
---|
73 | set { LocalOptimaParameter.Value.Value = value; }
|
---|
74 | }
|
---|
75 |
|
---|
76 | [StorableConstructor]
|
---|
77 | private GQAPDirectedWalk(StorableConstructorFlag _) : base(_) { }
|
---|
78 | private GQAPDirectedWalk(GQAPDirectedWalk original, Cloner cloner) : base(original, cloner) { }
|
---|
79 | public GQAPDirectedWalk() {
|
---|
80 | characteristics.AddRange(new[] { "1Shift.Sharpness", "1Shift.Bumpiness", "1Shift.Flatness" }
|
---|
81 | .Select(x => new StringValue(x)).ToList());
|
---|
82 | Parameters.Add(new FixedValueParameter<IntValue>("Paths", "The number of paths to explore (a path is a set of solutions that connect two randomly chosen solutions).", new IntValue(50)));
|
---|
83 | Parameters.Add(new FixedValueParameter<BoolValue>("BestImprovement", "Whether the best of all alternatives should be chosen for each step in the path or just the first improving (least degrading) move should be made.", new BoolValue(true)));
|
---|
84 | Parameters.Add(new OptionalValueParameter<IntValue>("Seed", "The seed for the random number generator."));
|
---|
85 | Parameters.Add(new FixedValueParameter<BoolValue>("LocalOptima", "Whether to perform walks between local optima.", new BoolValue(false)));
|
---|
86 | }
|
---|
87 |
|
---|
88 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
89 | return new GQAPDirectedWalk(this, cloner);
|
---|
90 | }
|
---|
91 |
|
---|
92 | public override bool CanCalculate() {
|
---|
93 | return Problem is GQAP;
|
---|
94 | }
|
---|
95 |
|
---|
96 | public override IEnumerable<IResult> Calculate() {
|
---|
97 | IRandom random = Seed.HasValue ? new MersenneTwister((uint)Seed.Value) : new MersenneTwister();
|
---|
98 | var gqap = (GQAP)Problem;
|
---|
99 | List<IntegerVector> assignments = CalculateRelinkingPoints(random, gqap, Paths, LocalOptima);
|
---|
100 |
|
---|
101 | var trajectories = Run(random, (GQAP)Problem, assignments, BestImprovement).ToList();
|
---|
102 | var result = IntegerVectorPathAnalysis.GetCharacteristics(trajectories);
|
---|
103 |
|
---|
104 | foreach (var chara in characteristics.CheckedItems.Select(x => x.Value.Value)) {
|
---|
105 | if (chara == "1Shift.Sharpness") yield return new Result("1Shift.Sharpness", new DoubleValue(result.Sharpness));
|
---|
106 | if (chara == "1Shift.Bumpiness") yield return new Result("1Shift.Bumpiness", new DoubleValue(result.Bumpiness));
|
---|
107 | if (chara == "1Shift.Flatness") yield return new Result("1Shift.Flatness", new DoubleValue(result.Flatness));
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | public static List<IntegerVector> CalculateRelinkingPoints(IRandom random, GQAP gqap, int pathCount, bool localOptima) {
|
---|
112 | var assign = new IntegerVector(gqap.ProblemInstance.Demands.Length, random, 0, gqap.ProblemInstance.Capacities.Length);
|
---|
113 | if (localOptima) {
|
---|
114 | var eval = gqap.ProblemInstance.Evaluate(assign);
|
---|
115 | var fit = gqap.ProblemInstance.ToSingleObjective(eval);
|
---|
116 | OneOptLocalSearch.Apply(random, assign, ref fit, ref eval, gqap.ProblemInstance, out var evals);
|
---|
117 | }
|
---|
118 | var points = new List<IntegerVector> { assign };
|
---|
119 | while (points.Count < pathCount + 1) {
|
---|
120 | assign = (IntegerVector)points.Last().Clone();
|
---|
121 | RelocateEquipmentManipluator.Apply(random, assign, gqap.ProblemInstance.Capacities.Length, 0);
|
---|
122 | if (localOptima) {
|
---|
123 | var eval = gqap.ProblemInstance.Evaluate(assign);
|
---|
124 | var fit = gqap.ProblemInstance.ToSingleObjective(eval);
|
---|
125 | OneOptLocalSearch.Apply(random, assign, ref fit, ref eval, gqap.ProblemInstance, out var evals);
|
---|
126 | }
|
---|
127 | if (HammingSimilarityCalculator.CalculateSimilarity(points.Last(), assign) < 0.75)
|
---|
128 | points.Add(assign);
|
---|
129 | }
|
---|
130 |
|
---|
131 | return points;
|
---|
132 | }
|
---|
133 |
|
---|
134 | public static IEnumerable<List<Tuple<IntegerVector, double>>> Run(IRandom random, GQAP gqap, IEnumerable<IntegerVector> points, bool bestImprovement = true) {
|
---|
135 | var iter = points.GetEnumerator();
|
---|
136 | if (!iter.MoveNext()) return new List<Tuple<IntegerVector, double>>[0];
|
---|
137 |
|
---|
138 | var start = iter.Current;
|
---|
139 | var walks = new List<List<Tuple<IntegerVector, double>>>();
|
---|
140 | while (iter.MoveNext()) {
|
---|
141 | var end = iter.Current;
|
---|
142 |
|
---|
143 | var walk = (bestImprovement ? BestDirectedWalk(gqap, start, end) : FirstDirectedWalk(random, gqap, start, end)).ToList();
|
---|
144 | walks.Add(walk);
|
---|
145 | start = end;
|
---|
146 | } // end paths
|
---|
147 |
|
---|
148 | var min = walks.SelectMany(x => x.Select(y => y.Item2)).Min();
|
---|
149 | var max = walks.SelectMany(x => x.Select(y => y.Item2)).Max();
|
---|
150 |
|
---|
151 | if (min == max) max = min + 1;
|
---|
152 | return walks.Select(w => w.Select(x => Tuple.Create(x.Item1, (x.Item2 - min) / (max - min))).ToList());
|
---|
153 | }
|
---|
154 |
|
---|
155 | private static IEnumerable<Tuple<IntegerVector, double>> BestDirectedWalk(GQAP gqap, IntegerVector start, IntegerVector end) {
|
---|
156 | var N = gqap.ProblemInstance.Demands.Length;
|
---|
157 | var sol = start;
|
---|
158 | var evaluation = gqap.ProblemInstance.Evaluate(start);
|
---|
159 | var fitness = gqap.ProblemInstance.ToSingleObjective(evaluation);
|
---|
160 | yield return Tuple.Create(sol, fitness);
|
---|
161 |
|
---|
162 | var reassignments = Enumerable.Range(0, N).Select(x => {
|
---|
163 | if (start[x] == end[x]) return null;
|
---|
164 | var r = new int[N];
|
---|
165 | r[x] = end[x] + 1;
|
---|
166 | return r;
|
---|
167 | }).ToArray();
|
---|
168 | var indices = Enumerable.Range(0, N).Select(x => start[x] == end[x] ? null : new List<int>(1) { x }).ToArray();
|
---|
169 |
|
---|
170 | for (var step = 0; step < N; step++) {
|
---|
171 | var bestFitness = double.MaxValue;
|
---|
172 | Evaluation bestEvaluation = null;
|
---|
173 | var bestIndex = -1;
|
---|
174 | sol = (IntegerVector)sol.Clone();
|
---|
175 |
|
---|
176 | for (var index = 0; index < N; index++) {
|
---|
177 | if (sol[index] == end[index]) continue;
|
---|
178 |
|
---|
179 | var oneMove = new NMove(reassignments[index], indices[index]);
|
---|
180 | var eval = GQAPNMoveEvaluator.Evaluate(oneMove, sol, evaluation, gqap.ProblemInstance);
|
---|
181 | var fit = gqap.ProblemInstance.ToSingleObjective(eval);
|
---|
182 | if (fit < bestFitness) { // QAP is minimization
|
---|
183 | bestFitness = fit;
|
---|
184 | bestEvaluation = eval;
|
---|
185 | bestIndex = index;
|
---|
186 | }
|
---|
187 | }
|
---|
188 | if (bestIndex >= 0) {
|
---|
189 | sol[bestIndex] = end[bestIndex];
|
---|
190 | fitness = bestFitness;
|
---|
191 | evaluation = bestEvaluation;
|
---|
192 | yield return Tuple.Create(sol, fitness);
|
---|
193 | } else break;
|
---|
194 | }
|
---|
195 | }
|
---|
196 |
|
---|
197 | private static IEnumerable<Tuple<IntegerVector, double>> FirstDirectedWalk(IRandom random, GQAP gqap, IntegerVector start, IntegerVector end) {
|
---|
198 | var N = gqap.ProblemInstance.Demands.Length;
|
---|
199 | var sol = start;
|
---|
200 | var evaluation = gqap.ProblemInstance.Evaluate(start);
|
---|
201 | var fitness = gqap.ProblemInstance.ToSingleObjective(evaluation);
|
---|
202 | yield return Tuple.Create(sol, fitness);
|
---|
203 |
|
---|
204 | var reassignments = Enumerable.Range(0, N).Select(x => {
|
---|
205 | if (start[x] == end[x]) return null;
|
---|
206 | var r = new int[N];
|
---|
207 | r[x] = end[x] + 1;
|
---|
208 | return r;
|
---|
209 | }).ToArray();
|
---|
210 | var indices = Enumerable.Range(0, N).Select(x => start[x] == end[x] ? null : new List<int>(1) { x }).ToArray();
|
---|
211 |
|
---|
212 | // randomize the order in which improvements are tried
|
---|
213 | var order = Enumerable.Range(0, N).Shuffle(random).ToArray();
|
---|
214 |
|
---|
215 | for (var step = 0; step < N; step++) {
|
---|
216 | var bestFitness = double.MaxValue;
|
---|
217 | Evaluation bestEvaluation = null;
|
---|
218 | var bestIndex = -1;
|
---|
219 | sol = (IntegerVector)sol.Clone();
|
---|
220 | for (var i = 0; i < N; i++) {
|
---|
221 | var index = order[i];
|
---|
222 | if (sol[index] == end[index]) continue;
|
---|
223 |
|
---|
224 | var oneMove = new NMove(reassignments[index], indices[index]);
|
---|
225 | var eval = GQAPNMoveEvaluator.Evaluate(oneMove, sol, evaluation, gqap.ProblemInstance);
|
---|
226 | var fit = gqap.ProblemInstance.ToSingleObjective(eval);
|
---|
227 |
|
---|
228 | if (fit < bestFitness) { // GQAP is minimization
|
---|
229 | bestFitness = fit;
|
---|
230 | bestEvaluation = evaluation;
|
---|
231 | bestIndex = index;
|
---|
232 | if (fit < fitness) break;
|
---|
233 | }
|
---|
234 | }
|
---|
235 | if (bestIndex >= 0) {
|
---|
236 | sol[bestIndex] = end[bestIndex];
|
---|
237 | fitness = bestFitness;
|
---|
238 | evaluation = bestEvaluation;
|
---|
239 | yield return Tuple.Create(sol, fitness);
|
---|
240 | } else break;
|
---|
241 | }
|
---|
242 | }
|
---|
243 | }
|
---|
244 | }
|
---|