Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
04/16/13 13:13:41 (12 years ago)
Author:
spimming
Message:

#1888:

  • Merged revisions from trunk
Location:
branches/OaaS
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • branches/OaaS

  • branches/OaaS/HeuristicLab.Problems.DataAnalysis

  • branches/OaaS/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ThresholdCalculators/AccuracyMaximizationThresholdCalculator.cs

    r8126 r9363  
    5353
    5454    public static void CalculateThresholds(IClassificationProblemData problemData, IEnumerable<double> estimatedValues, IEnumerable<double> targetClassValues, out double[] classValues, out double[] thresholds) {
    55       int slices = 100;
    56       double minThresholdInc = 10e-5; // necessary to prevent infinite loop when maxEstimated - minEstimated is effectively zero (constant model)
     55      const int slices = 100;
     56      const double minThresholdInc = 10e-5; // necessary to prevent infinite loop when maxEstimated - minEstimated is effectively zero (constant model)
    5757      List<double> estimatedValuesList = estimatedValues.ToList();
    5858      double maxEstimatedValue = estimatedValuesList.Max();
     
    6161      var estimatedAndTargetValuePairs =
    6262        estimatedValuesList.Zip(targetClassValues, (x, y) => new { EstimatedValue = x, TargetClassValue = y })
    63         .OrderBy(x => x.EstimatedValue)
    64         .ToList();
     63        .OrderBy(x => x.EstimatedValue).ToList();
    6564
    66       classValues = problemData.ClassValues.OrderBy(x => x).ToArray();
     65      classValues = estimatedAndTargetValuePairs.GroupBy(x => x.TargetClassValue)
     66        .Select(x => new { Median = x.Select(y => y.EstimatedValue).Median(), Class = x.Key })
     67        .OrderBy(x => x.Median).Select(x => x.Class).ToArray();
     68
    6769      int nClasses = classValues.Length;
    6870      thresholds = new double[nClasses];
    6971      thresholds[0] = double.NegativeInfinity;
    70       // thresholds[thresholds.Length - 1] = double.PositiveInfinity;
    7172
    7273      // incrementally calculate accuracy of all possible thresholds
     
    8586            //all positives
    8687            if (pair.TargetClassValue.IsAlmost(classValues[i - 1])) {
    87               if (pair.EstimatedValue > lowerThreshold && pair.EstimatedValue < actualThreshold)
     88              if (pair.EstimatedValue > lowerThreshold && pair.EstimatedValue <= actualThreshold)
    8889                //true positive
    89                 classificationScore += problemData.GetClassificationPenalty(classValues[i - 1], classValues[i - 1]);
     90                classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, pair.TargetClassValue);
    9091              else
    9192                //false negative
    92                 classificationScore += problemData.GetClassificationPenalty(classValues[i], classValues[i - 1]);
     93                classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i]);
    9394            }
    9495              //all negatives
    9596            else {
    96               if (pair.EstimatedValue > lowerThreshold && pair.EstimatedValue < actualThreshold)
    97                 //false positive
    98                 classificationScore += problemData.GetClassificationPenalty(classValues[i - 1], classValues[i]);
    99               else
    100                 //true negative, consider only upper class
    101                 classificationScore += problemData.GetClassificationPenalty(classValues[i], classValues[i]);
     97              //false positive
     98              if (pair.EstimatedValue > lowerThreshold && pair.EstimatedValue <= actualThreshold)
     99                classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i - 1]);
     100              else if (pair.EstimatedValue <= lowerThreshold)
     101                classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i - 2]);
     102              else if (pair.EstimatedValue > actualThreshold) {
     103                if (pair.TargetClassValue < classValues[i - 1]) //negative in wrong class, consider upper class
     104                  classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, classValues[i]);
     105                else //true negative, must be optimized by the other thresholds
     106                  classificationScore += problemData.GetClassificationPenalty(pair.TargetClassValue, pair.TargetClassValue);
     107              }
    102108            }
    103109          }
  • branches/OaaS/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ThresholdCalculators/NormalDistributionCutPointsThresholdCalculator.cs

    r7259 r9363  
    5353
    5454    public static void CalculateThresholds(IClassificationProblemData problemData, IEnumerable<double> estimatedValues, IEnumerable<double> targetClassValues, out double[] classValues, out double[] thresholds) {
    55       double maxEstimatedValue = estimatedValues.Max();
    56       double minEstimatedValue = estimatedValues.Min();
    5755      var estimatedTargetValues = Enumerable.Zip(estimatedValues, targetClassValues, (e, t) => new { EstimatedValue = e, TargetValue = t }).ToList();
     56      double estimatedValuesRange = estimatedValues.Range();
    5857
    5958      Dictionary<double, double> classMean = new Dictionary<double, double>();
     
    7271        }
    7372      }
     73
    7474      double[] originalClasses = classMean.Keys.OrderBy(x => x).ToArray();
    7575      int nClasses = originalClasses.Length;
     
    8282          // calculate all thresholds
    8383          CalculateCutPoints(classMean[class0], classStdDev[class0], classMean[class1], classStdDev[class1], out x1, out x2);
    84           if (!thresholdList.Any(x => x.IsAlmost(x1))) thresholdList.Add(x1);
    85           if (!thresholdList.Any(x => x.IsAlmost(x2))) thresholdList.Add(x2);
     84
     85          // if the two cut points are too close (for instance because the stdDev=0)
     86          // then move them by 0.1% of the range of estimated values
     87          if (x1.IsAlmost(x2)) {
     88            x1 -= 0.001 * estimatedValuesRange;
     89            x2 += 0.001 * estimatedValuesRange;
     90          }
     91          if (!double.IsInfinity(x1) && !thresholdList.Any(x => x.IsAlmost(x1))) thresholdList.Add(x1);
     92          if (!double.IsInfinity(x2) && !thresholdList.Any(x => x.IsAlmost(x2))) thresholdList.Add(x2);
    8693        }
    8794      }
    8895      thresholdList.Sort();
     96
     97      // add small value and large value for the calculation of most influential class in each thresholded section
    8998      thresholdList.Insert(0, double.NegativeInfinity);
    90 
    91       // determine class values for each partition separated by a threshold by calculating the density of all class distributions
    92       // all points in the partition are classified as the class with the maximal density in the parition
    93       List<double> classValuesList = new List<double>();
    94       for (int i = 0; i < thresholdList.Count; i++) {
    95         double m;
    96         if (double.IsNegativeInfinity(thresholdList[i])) {
    97           m = thresholdList[i + 1] - 1.0; // smaller than the smalles non-infinity threshold
    98         } else if (i == thresholdList.Count - 1) {
    99           // last threshold
    100           m = thresholdList[i] + 1.0; // larger than the last threshold
    101         } else {
    102           m = thresholdList[i] + (thresholdList[i + 1] - thresholdList[i]) / 2.0; // middle of partition
    103         }
    104 
    105         // determine class with maximal probability density in m
    106         double maxDensity = double.MinValue;
    107         double maxDensityClassValue = -1;
    108         foreach (var classValue in originalClasses) {
    109           double density = NormalDensity(m, classMean[classValue], classStdDev[classValue]);
     99      thresholdList.Add(double.PositiveInfinity);
     100
     101
     102      // find the most likely class for the points between thresholds m
     103      List<double> filteredThresholds = new List<double>();
     104      List<double> filteredClassValues = new List<double>();
     105      for (int i = 0; i < thresholdList.Count - 1; i++) {
     106        // determine class with maximal density mass between the thresholds
     107        double maxDensity = DensityMass(thresholdList[i], thresholdList[i + 1], classMean[originalClasses[0]], classStdDev[originalClasses[0]]);
     108        double maxDensityClassValue = originalClasses[0];
     109        foreach (var classValue in originalClasses.Skip(1)) {
     110          double density = DensityMass(thresholdList[i], thresholdList[i + 1], classMean[classValue], classStdDev[classValue]);
    110111          if (density > maxDensity) {
    111112            maxDensity = density;
     
    113114          }
    114115        }
    115         classValuesList.Add(maxDensityClassValue);
    116       }
    117 
    118       // only keep thresholds at which the class changes
    119       // class B overrides threshold s. So only thresholds r and t are relevant and have to be kept
    120       //
    121       //      A    B  C
    122       //       /\  /\/\       
    123       //      / r\/ /\t\       
    124       //     /   /\/  \ \     
    125       //    /   / /\s  \ \     
    126       //  -/---/-/ -\---\-\----
    127       List<double> filteredThresholds = new List<double>();
    128       List<double> filteredClassValues = new List<double>();
    129       filteredThresholds.Add(thresholdList[0]);
    130       filteredClassValues.Add(classValuesList[0]);
    131       for (int i = 0; i < classValuesList.Count - 1; i++) {
    132         if (classValuesList[i] != classValuesList[i + 1]) {
    133           filteredThresholds.Add(thresholdList[i + 1]);
    134           filteredClassValues.Add(classValuesList[i + 1]);
    135         }
    136       }
     116        if (maxDensity > double.NegativeInfinity &&
     117          (filteredClassValues.Count == 0 || !maxDensityClassValue.IsAlmost(filteredClassValues.Last()))) {
     118          filteredThresholds.Add(thresholdList[i]);
     119          filteredClassValues.Add(maxDensityClassValue);
     120        }
     121      }
     122
     123      if (filteredThresholds.Count == 0 || !double.IsNegativeInfinity(filteredThresholds.First())) {
     124        // this happens if there are no thresholds (distributions for all classes are exactly the same)
     125        // or when the CDF up to the first threshold is zero
     126        // -> all samples should be classified as the class with the most observations
     127        // group observations by target class and select the class with largest count
     128        double mostFrequentClass = targetClassValues.GroupBy(c => c)
     129                              .OrderBy(g => g.Count())
     130                              .Last().Key;
     131        filteredThresholds.Insert(0, double.NegativeInfinity);
     132        filteredClassValues.Insert(0, mostFrequentClass);
     133      }
     134
    137135      thresholds = filteredThresholds.ToArray();
    138136      classValues = filteredClassValues.ToArray();
    139137    }
    140138
    141     private static double NormalDensity(double x, double mu, double sigma) {
     139    private static double sqr2 = Math.Sqrt(2.0);
     140    // returns the density function of the standard normal distribution at x
     141    private static double NormalCDF(double x) {
     142      return 0.5 * (1 + alglib.errorfunction(x / sqr2));
     143    }
     144
     145    // approximation of the log of the normal cummulative distribution from the lightspeed toolbox by Tom Minka
     146    // http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
     147    private static double[] c = new double[] { -1, 5 / 2.0, -37 / 3.0, 353 / 4.0, -4081 / 5.0, 55205 / 6.0, -854197 / 7.0 };
     148    private static double LogNormalCDF(double x) {
     149      if (x >= -6.5)
     150        // calculate the log directly if x is large enough
     151        return Math.Log(NormalCDF(x));
     152      else {
     153        double z = Math.Pow(x, -2);
     154        // asymptotic series for logcdf
     155        double y = z * (c[0] + z * (c[1] + z * (c[2] + z * (c[3] + z * (c[4] + z * (c[5] + z * c[6]))))));
     156        return y - 0.5 * Math.Log(2 * Math.PI) - 0.5 * x * x - Math.Log(-x);
     157      }
     158    }
     159
     160    // determines the value NormalCDF(mu,sigma, upper)  - NormalCDF(mu, sigma, lower)
     161    // = the integral of the PDF of N(mu, sigma) in the range [lower, upper]
     162    private static double DensityMass(double lower, double upper, double mu, double sigma) {
    142163      if (sigma.IsAlmost(0.0)) {
    143         if (x.IsAlmost(mu)) return 1.0; else return 0.0;
     164        if (lower < mu && mu < upper) return 0.0; // all mass is between lower and upper
     165        else return double.NegativeInfinity; // no mass is between lower and upper
     166      }
     167
     168      if (lower > mu) {
     169        return DensityMass(-upper, -lower, -mu, sigma);
     170      }
     171
     172      upper = (upper - mu) / sigma;
     173      lower = (lower - mu) / sigma;
     174      if (double.IsNegativeInfinity(lower)) return LogNormalCDF(upper);
     175
     176      return LogNormalCDF(upper) + Math.Log(1 - Math.Exp(LogNormalCDF(lower) - LogNormalCDF(upper)));
     177    }
     178
     179    // Calculates the points x1 and x2 where the distributions N(m1, s1) == N(m2,s2).
     180    // In the general case there should be two cut points. If either s1 or s2 is 0 then x1==x2.
     181    // If both s1 and s2 are zero than there are no cut points but we should return something reasonable (e.g. (m1 + m2) / 2) then.
     182    private static void CalculateCutPoints(double m1, double s1, double m2, double s2, out double x1, out double x2) {
     183      if (s1.IsAlmost(s2)) {
     184        if (m1.IsAlmost(m2)) {
     185          x1 = double.NegativeInfinity;
     186          x2 = double.NegativeInfinity;
     187        } else {
     188          // s1==s2 and m1 != m2
     189          // return something reasonable. cut point should be half way between m1 and m2
     190          x1 = (m1 + m2) / 2;
     191          x2 = double.NegativeInfinity;
     192        }
     193      } else if (s1.IsAlmost(0.0)) {
     194        // when s1 is 0.0 the cut points are exactly at m1 ...
     195        x1 = m1;
     196        x2 = m1;
     197      } else if (s2.IsAlmost(0.0)) {
     198        // ... same for s2
     199        x1 = m2;
     200        x2 = m2;
    144201      } else {
    145         return (1.0 / Math.Sqrt(2.0 * Math.PI * sigma * sigma)) * Math.Exp(-((x - mu) * (x - mu)) / (2.0 * sigma * sigma));
    146       }
    147     }
    148 
    149     private static void CalculateCutPoints(double m1, double s1, double m2, double s2, out double x1, out double x2) {
    150       double a = (s1 * s1 - s2 * s2);
    151       x1 = -(-m2 * s1 * s1 + m1 * s2 * s2 + Math.Sqrt(s1 * s1 * s2 * s2 * ((m1 - m2) * (m1 - m2) + 2.0 * (-s1 * s1 + s2 * s2) * Math.Log(s2 / s1)))) / a;
    152       x2 = (m2 * s1 * s1 - m1 * s2 * s2 + Math.Sqrt(s1 * s1 * s2 * s2 * ((m1 - m2) * (m1 - m2) + 2.0 * (-s1 * s1 + s2 * s2) * Math.Log(s2 / s1)))) / a;
     202        if (s2 < s1) {
     203          // make sure s2 is the larger std.dev.
     204          CalculateCutPoints(m2, s2, m1, s1, out x1, out x2);
     205        } else {
     206          // general case
     207          // calculate the solutions x1, x2 where N(m1,s1) == N(m2,s2)
     208          double g = Math.Sqrt(2 * s2 * s2 * Math.Log(s2 / s1) - 2 * s1 * s1 * Math.Log(s2 / s1) - 2 * m1 * m2 + m1 * m1 + m2 * m2);
     209          double s = (s1 * s1 - s2 * s2);
     210          x1 = (m2 * s1 * s1 - m1 * s2 * s2 + s1 * s2 * g) / s;
     211          x2 = -(m1 * s2 * s2 - m2 * s1 * s1 + s1 * s2 * g) / s;
     212        }
     213      }
    153214    }
    154215  }
Note: See TracChangeset for help on using the changeset viewer.