- Timestamp:
- 04/15/13 15:07:16 (12 years ago)
- Location:
- trunk/sources
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceFunctions/CovarianceNeuralNetwork.cs
r9359 r9360 40 40 } 41 41 42 public IValueParameter<DoubleValue> InverseLengthParameter {43 get { return (IValueParameter<DoubleValue>)Parameters[" InverseLength"]; }42 public IValueParameter<DoubleValue> LengthParameter { 43 get { return (IValueParameter<DoubleValue>)Parameters["Length"]; } 44 44 } 45 45 … … 59 59 60 60 Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter.")); 61 Parameters.Add(new OptionalValueParameter<DoubleValue>(" InverseLength", "The inverse length parameter."));61 Parameters.Add(new OptionalValueParameter<DoubleValue>("Length", "The length parameter.")); 62 62 } 63 63 … … 69 69 return 70 70 (ScaleParameter.Value != null ? 0 : 1) + 71 ( InverseLengthParameter.Value != null ? 0 : 1);71 (LengthParameter.Value != null ? 0 : 1); 72 72 } 73 73 74 74 public void SetParameter(double[] p) { 75 double scale, inverseLength;76 GetParameterValues(p, out scale, out inverseLength);75 double scale, length; 76 GetParameterValues(p, out scale, out length); 77 77 ScaleParameter.Value = new DoubleValue(scale); 78 InverseLengthParameter.Value = new DoubleValue(inverseLength);78 LengthParameter.Value = new DoubleValue(length); 79 79 } 80 80 81 81 82 private void GetParameterValues(double[] p, out double scale, out double inverseLength) {82 private void GetParameterValues(double[] p, out double scale, out double length) { 83 83 // gather parameter values 84 84 int c = 0; 85 if ( InverseLengthParameter.Value != null) {86 inverseLength = InverseLengthParameter.Value.Value;85 if (LengthParameter.Value != null) { 86 length = LengthParameter.Value.Value; 87 87 } else { 88 inverseLength = 1.0 / Math.Exp(p[c]);88 length = Math.Exp(2 * p[c]); 89 89 c++; 90 90 } … … 105 105 private static Func<Term, UnaryFunc> sqrt = UnaryFunc.Factory( 106 106 x => Math.Sqrt(x), 107 x => 1 / 2 * Math.Sqrt(x));107 x => 1 / (2 * Math.Sqrt(x))); 108 108 109 109 public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) { 110 double inverseLength, scale;111 GetParameterValues(p, out scale, out inverseLength);110 double length, scale; 111 GetParameterValues(p, out scale, out length); 112 112 // create functions 113 113 AutoDiff.Variable p0 = new AutoDiff.Variable(); 114 114 AutoDiff.Variable p1 = new AutoDiff.Variable(); 115 var invL = 1.0 / TermBuilder.Exp(p0);116 var s = TermBuilder.Exp(2 * p1);115 var l = TermBuilder.Exp(2.0 * p0); 116 var s = TermBuilder.Exp(2.0 * p1); 117 117 AutoDiff.Variable[] x1 = new AutoDiff.Variable[columnIndices.Count()]; 118 118 AutoDiff.Variable[] x2 = new AutoDiff.Variable[columnIndices.Count()]; 119 AutoDiff.Term sx = invL;120 AutoDiff.Term s1 = invL;121 AutoDiff.Term s2 = invL;119 AutoDiff.Term sx = 1; 120 AutoDiff.Term s1 = 1; 121 AutoDiff.Term s2 = 1; 122 122 foreach (var k in columnIndices) { 123 123 x1[k] = new AutoDiff.Variable(); 124 124 x2[k] = new AutoDiff.Variable(); 125 sx += x1[k] * invL *x2[k];126 s1 += x1[k] * invL *x1[k];127 s2 += x2[k] * invL *x2[k];125 sx += x1[k] * x2[k]; 126 s1 += x1[k] * x1[k]; 127 s2 += x2[k] * x2[k]; 128 128 } 129 129 130 130 var parameter = x1.Concat(x2).Concat(new AutoDiff.Variable[] { p0, p1 }).ToArray(); 131 131 var values = new double[x1.Length + x2.Length + 2]; 132 var c = (s * asin( 2 * sx / (sqrt((1 + 2 * s1) * (1 + 2 *s2))))).Compile(parameter);132 var c = (s * asin(sx / (sqrt((l + s1) * (l + s2))))).Compile(parameter); 133 133 134 134 var cov = new ParameterizedCovarianceFunction(); … … 143 143 k++; 144 144 } 145 values[k] = Math.Log( 1.0 / inverseLength);146 values[k + 1] = Math.Log( scale) / 2.0;145 values[k] = Math.Log(Math.Sqrt(length)); 146 values[k + 1] = Math.Log(Math.Sqrt(scale)); 147 147 return c.Evaluate(values); 148 148 }; … … 157 157 k++; 158 158 } 159 values[k] = Math.Log( 1.0 / inverseLength);160 values[k + 1] = Math.Log( scale) / 2.0;159 values[k] = Math.Log(Math.Sqrt(length)); 160 values[k + 1] = Math.Log(Math.Sqrt(scale)); 161 161 return c.Evaluate(values); 162 162 }; … … 171 171 k++; 172 172 } 173 values[k] = Math.Log( 1.0 / inverseLength);174 values[k + 1] = Math.Log( scale) / 2.0;173 values[k] = Math.Log(Math.Sqrt(length)); 174 values[k + 1] = Math.Log(Math.Sqrt(scale)); 175 175 return c.Differentiate(values).Item1.Skip(columnIndices.Count() * 2); 176 176 }; -
trunk/sources/HeuristicLab.Tests/HeuristicLab.Algorithms.DataAnalysis-3.4/GaussianProcessFunctionsTest.cs
r8982 r9360 264 264 265 265 [TestMethod] 266 public void CovNnTest() { 267 TestCovarianceFunction(new CovarianceNeuralNetwork(), 0, 268 new double[,] 269 { 270 { 0.5930, 0.5896, 0.7951, 0.5808, 0.7787, 0.6411, 0.6672, 0.6814, 0.6297, 0.7338}, 271 { 0.5214, 0.5987, 0.6763, 0.5053, 0.7289, 0.6077, 0.5909, 0.6230, 0.5621, 0.6472}, 272 { 0.7299, 0.7305, 0.8081, 0.6837, 0.7039, 0.7994, 0.7756, 0.6668, 0.7145, 0.7665}, 273 { 0.6399, 0.5347, 0.7261, 0.6044, 0.5836, 0.6549, 0.7250, 0.6815, 0.6720, 0.6819}, 274 { 0.6627, 0.5300, 0.7045, 0.6665, 0.5340, 0.5659, 0.6509, 0.6692, 0.6600, 0.6747}, 275 { 0.6151, 0.5719, 0.6465, 0.5881, 0.5593, 0.6189, 0.6585, 0.6397, 0.6364, 0.6382}, 276 { 0.5978, 0.6929, 0.7292, 0.5719, 0.8209, 0.6695, 0.6469, 0.5966, 0.6160, 0.7203}, 277 { 0.6944, 0.7128, 0.8241, 0.6566, 0.8002, 0.7548, 0.7503, 0.6494, 0.6961, 0.7875}, 278 { 0.6443, 0.6893, 0.8074, 0.6258, 0.8018, 0.7049, 0.6885, 0.6633, 0.6530, 0.7602}, 279 { 0.4829, 0.5970, 0.6259, 0.4461, 0.6737, 0.6484, 0.5912, 0.6067, 0.5329, 0.5928}, 280 }, 281 new double[][,] 282 { 283 new double[,] { 284 { -0.5669, -0.5220, -0.3879, -0.4304, -0.4540, -0.4460, -0.4901, -0.4465, -0.5095, -0.4340}, 285 { -0.5220, -0.5969, -0.3884, -0.3843, -0.4499, -0.4737, -0.4843, -0.3961, -0.5133, -0.5540}, 286 { -0.3879, -0.3884, -0.5554, -0.4160, -0.4600, -0.4671, -0.4056, -0.4603, -0.4637, -0.3810}, 287 { -0.4304, -0.3843, -0.4160, -0.5895, -0.4728, -0.5384, -0.3884, -0.4288, -0.3748, -0.3672}, 288 { -0.4540, -0.4499, -0.4600, -0.4728, -0.5977, -0.5296, -0.3758, -0.3954, -0.4610, -0.4165}, 289 { -0.4460, -0.4737, -0.4671, -0.5384, -0.5296, -0.5987, -0.4280, -0.4285, -0.4369, -0.4802}, 290 { -0.4901, -0.4843, -0.4056, -0.3884, -0.3758, -0.4280, -0.5731, -0.5003, -0.4920, -0.4043}, 291 { -0.4465, -0.3961, -0.4603, -0.4288, -0.3954, -0.4285, -0.5003, -0.5362, -0.4621, -0.3360}, 292 { -0.5095, -0.5133, -0.4637, -0.3748, -0.4610, -0.4369, -0.4920, -0.4621, -0.5614, -0.4463}, 293 { -0.4340, -0.5540, -0.3810, -0.3672, -0.4165, -0.4802, -0.4043, -0.3360, -0.4463, -0.5987}, 294 }, 295 new double[,] { 296 { 1.6963, 1.4541, 1.3587, 1.3199, 1.3084, 1.1825, 1.5272, 1.5553, 1.6096, 1.2526}, 297 { 1.4541, 1.4500, 1.2006, 1.0794, 1.1704, 1.1251, 1.3601, 1.2650, 1.4540, 1.3576}, 298 { 1.3587, 1.2006, 1.7563, 1.3216, 1.3536, 1.2537, 1.3780, 1.6296, 1.5559, 1.1618}, 299 { 1.3199, 1.0794, 1.3216, 1.5376, 1.2625, 1.2852, 1.2016, 1.4015, 1.2051, 1.0222}, 300 { 1.3084, 1.1704, 1.3536, 1.2625, 1.4362, 1.2215, 1.1132, 1.2541, 1.3394, 1.0837}, 301 { 1.1825, 1.1251, 1.2537, 1.2852, 1.2215, 1.2511, 1.1282, 1.2125, 1.1771, 1.1218}, 302 { 1.5272, 1.3601, 1.3780, 1.2016, 1.1132, 1.1282, 1.6603, 1.6427, 1.5504, 1.1677}, 303 { 1.5553, 1.2650, 1.6296, 1.4015, 1.2541, 1.2125, 1.6427, 1.8427, 1.6113, 1.0910}, 304 { 1.6096, 1.4540, 1.5559, 1.2051, 1.3394, 1.1771, 1.5504, 1.6113, 1.7261, 1.2950}, 305 { 1.2526, 1.3576, 1.1618, 1.0222, 1.0837, 1.1218, 1.1677, 1.0910, 1.2950, 1.4153}, 306 } 307 } 308 ); 309 TestCovarianceFunction(new CovarianceNeuralNetwork(), 1, 310 new double[,] 311 { 312 { 1.4436, 1.4866, 2.0692, 1.4105, 2.1077, 1.7712, 1.6764, 1.6030, 1.4898, 1.7857}, 313 { 1.1652, 1.3662, 1.6384, 1.1271, 1.8076, 1.5312, 1.3659, 1.3446, 1.2210, 1.4545}, 314 { 1.7710, 1.8348, 2.1497, 1.6684, 1.9875, 2.1872, 1.9499, 1.6132, 1.7025, 1.8978}, 315 { 1.4480, 1.2766, 1.8006, 1.3710, 1.5424, 1.6920, 1.6866, 1.5035, 1.4784, 1.5742}, 316 { 1.4350, 1.2175, 1.6874, 1.4354, 1.3683, 1.4290, 1.4793, 1.4231, 1.3994, 1.4995}, 317 { 1.2557, 1.2181, 1.4634, 1.2013, 1.3324, 1.4450, 1.3951, 1.2781, 1.2662, 1.3344}, 318 { 1.4328, 1.6864, 1.8991, 1.3709, 2.1658, 1.8123, 1.6081, 1.4065, 1.4398, 1.7323}, 319 { 1.7618, 1.8647, 2.2657, 1.6713, 2.2933, 2.1661, 1.9689, 1.6354, 1.7276, 2.0126}, 320 { 1.5724, 1.7252, 2.1209, 1.5259, 2.1852, 1.9465, 1.7436, 1.5858, 1.5568, 1.8614}, 321 { 1.0716, 1.3447, 1.5116, 0.9906, 1.6687, 1.5994, 1.3485, 1.2963, 1.1483, 1.3287}, 322 }, 323 new double[][,] 324 { 325 new double[,] { 326 { -3.1708, -2.6488, -2.6475, -2.4774, -2.4067, -2.1099, -2.8841, -3.0223, -3.0526, -2.3041}, 327 { -2.6488, -2.5111, -2.2570, -1.9637, -2.0708, -1.9172, -2.4814, -2.3998, -2.6632, -2.3537}, 328 { -2.6475, -2.2570, -3.3336, -2.5066, -2.5075, -2.2490, -2.6640, -3.1778, -2.9977, -2.1743}, 329 { -2.4774, -1.9637, -2.5066, -2.7415, -2.2591, -2.2029, -2.2607, -2.6778, -2.2936, -1.8530}, 330 { -2.4067, -2.0708, -2.5075, -2.2591, -2.4753, -2.0592, -2.0638, -2.3743, -2.4708, -1.9151}, 331 { -2.1099, -1.9172, -2.2490, -2.2029, -2.0592, -2.0176, -2.0074, -2.2134, -2.1126, -1.8976}, 332 { -2.8841, -2.4814, -2.6640, -2.2607, -2.0638, -2.0074, -3.0726, -3.1450, -2.9374, -2.1472}, 333 { -3.0223, -2.3998, -3.1778, -2.6778, -2.3743, -2.2134, -3.1450, -3.5652, -3.1314, -2.0795}, 334 { -3.0526, -2.6632, -2.9977, -2.2936, -2.4708, -2.1126, -2.9374, -3.1314, -3.2519, -2.3870}, 335 { -2.3041, -2.3537, -2.1743, -1.8530, -1.9151, -1.8976, -2.1472, -2.0795, -2.3870, -2.4217}, 336 }, 337 new double[,] { 338 { 4.3303, 3.4649, 3.7030, 3.3026, 3.1505, 2.6912, 3.9244, 4.3025, 4.2082, 3.0090}, 339 { 3.4649, 3.1323, 3.0110, 2.5036, 2.5893, 2.3340, 3.2266, 3.2706, 3.5078, 2.9242}, 340 { 3.7030, 3.0110, 4.6774, 3.3899, 3.3261, 2.9053, 3.6926, 4.5813, 4.1997, 2.8855}, 341 { 3.3026, 2.5036, 3.3899, 3.5200, 2.8645, 2.7165, 2.9968, 3.6979, 3.0870, 2.3508}, 342 { 3.1505, 2.5893, 3.3261, 2.8645, 3.0745, 2.4980, 2.6901, 3.2286, 3.2548, 2.3841}, 343 { 2.6912, 2.3340, 2.9053, 2.7165, 2.4980, 2.3825, 2.5425, 2.9255, 2.7134, 2.2974}, 344 { 3.9244, 3.2266, 3.6926, 2.9968, 2.6901, 2.5425, 4.1329, 4.4278, 4.0227, 2.7860}, 345 { 4.3025, 3.2706, 4.5813, 3.6979, 3.2286, 2.9255, 4.4278, 5.2237, 4.4826, 2.8275}, 346 { 4.2082, 3.5078, 4.1997, 3.0870, 3.2548, 2.7134, 4.0227, 4.4826, 4.4998, 3.1361}, 347 { 3.0090, 2.9242, 2.8855, 2.3508, 2.3841, 2.2974, 2.7860, 2.8275, 3.1361, 2.9891}, 348 }, 349 } 350 ); 351 } 352 353 354 [TestMethod] 266 355 public void CovRQIsoTest() { 267 356 TestCovarianceFunction(new CovarianceRationalQuadraticIso(), 0,
Note: See TracChangeset
for help on using the changeset viewer.