Changeset 9262 for branches/sluengo/HeuristicLab.Problems.TradeRules
- Timestamp:
- 02/28/13 23:48:00 (12 years ago)
- Location:
- branches/sluengo/HeuristicLab.Problems.TradeRules
- Files:
-
- 34 added
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/sluengo/HeuristicLab.Problems.TradeRules/Grammar.cs
r9139 r9262 41 41 private const string BooleanConstant = "Boolean Constant"; 42 42 private const string TradeMean = "Average Trade"; 43 private const string MACDIndicator = "MACD Indicator";43 private const string Indicators = "Indicators"; 44 44 private const string SerialTime = "Serial Operators"; 45 45 … … 64 64 65 65 var mean = new AverageTrade(); 66 var expMovAverage = new EMA();67 66 var macd = new MACD(); 68 var RSI= new RSI();67 var rsi = new RSI(); 69 68 70 69 var gt = new GreaterThan(); … … 91 90 var booleanConstantsSymbols = new GroupSymbol(BooleanConstant, new List<ISymbol> { boolean }); 92 91 var meanTradeSymbols = new GroupSymbol(TradeMean, new List<ISymbol> { mean}); 93 var indicatorTradeSymbols = new GroupSymbol( MACDIndicator, new List<ISymbol> { macd,RSI, expMovAverage});92 var indicatorTradeSymbols = new GroupSymbol(Indicators, new List<ISymbol> { macd,rsi}); 94 93 95 94 var serialTime = new GroupSymbol(SerialTime, new List<ISymbol> {max,min, lag }); … … 110 109 SetSubtreeCount(arithmeticSymbols, 2, 2); 111 110 SetSubtreeCount(terminalSymbols, 0, 0); 112 113 111 SetSubtreeCount(booleanConstantsSymbols, 0, 0); 114 112 SetSubtreeCount(meanTradeSymbols, 1, 1); 115 113 SetSubtreeCount(macd, 3, 3); 116 SetSubtreeCount(RSI, 1, 1); 117 SetSubtreeCount(expMovAverage, 1, 1); 114 SetSubtreeCount(rsi, 1, 1); 118 115 SetSubtreeCount(comparisonSymbols, 2, 2); 119 116 SetSubtreeCount(and, 2, 2); … … 124 121 125 122 #region allowed child symbols configuration 126 //AddAllowedChildSymbol(StartSymbol, booleanOperationSymbols); 127 //AddAllowedChildSymbol(StartSymbol, comparisonSymbols); 128 AddAllowedChildSymbol(StartSymbol, expMovAverage); 123 AddAllowedChildSymbol(StartSymbol, booleanOperationSymbols); 124 AddAllowedChildSymbol(StartSymbol, comparisonSymbols); 129 125 130 126 AddAllowedChildSymbol(booleanOperationSymbols, comparisonSymbols); 131 127 AddAllowedChildSymbol(booleanOperationSymbols, booleanConstantsSymbols); 132 //AddAllowedChildSymbol(booleanOperationSymbols, indicatorTradeSymbols); 128 AddAllowedChildSymbol(booleanOperationSymbols, indicatorTradeSymbols); 129 AddAllowedChildSymbol(booleanOperationSymbols, booleanOperationSymbols); 133 130 134 131 AddAllowedChildSymbol(comparisonSymbols, meanTradeSymbols); … … 142 139 AddAllowedChildSymbol(arithmeticSymbols, serialTime); 143 140 141 AddAllowedChildSymbol(indicatorTradeSymbols, constantint); 144 142 AddAllowedChildSymbol(serialTime, constantint); 145 146 AddAllowedChildSymbol(meanTradeSymbols, constantint); 147 AddAllowedChildSymbol(indicatorTradeSymbols, constantint); 143 AddAllowedChildSymbol(meanTradeSymbols, constantint); 148 144 #endregion 149 145 } -
branches/sluengo/HeuristicLab.Problems.TradeRules/HeuristicLab.Problems.TradeRules-1.0.csproj
r9139 r9262 96 96 </ItemGroup> 97 97 <ItemGroup> 98 <Compile Include="AverageTrade.cs" /> 99 <Compile Include="BoolConstant.cs" /> 100 <Compile Include="BoolConstantTreeNode.cs" /> 101 <Compile Include="ConstantInt.cs" /> 102 <Compile Include="ConstantIntTreeNode.cs" /> 103 <Compile Include="EMA.cs" /> 104 <Compile Include="EvaluatorTradeRules.cs" /> 98 <Compile Include="Symbols\AverageTrade.cs" /> 99 <Compile Include="Symbols\BoolConstant.cs" /> 100 <Compile Include="Symbols\BoolConstantTreeNode.cs" /> 101 <Compile Include="Symbols\ConstantInt.cs" /> 102 <Compile Include="Symbols\ConstantIntTreeNode.cs" /> 103 <Compile Include="Evaluator\EvaluatorTradeRules.cs" /> 105 104 <Compile Include="Grammar.cs" /> 106 105 <Compile Include="Interpreter.cs" /> 107 <Compile Include="Lag.cs" /> 108 <Compile Include="MACD.cs" /> 109 <Compile Include="Max.cs" /> 110 <Compile Include="Min.cs" /> 106 <Compile Include="Symbols\ITradeRulesExpresionTree.cs" /> 107 <Compile Include="ITradeRulesModel.cs" /> 108 <Compile Include="Solution\ITradeRulesSolution.cs" /> 109 <Compile Include="Solution\ITradingRulesSolution.cs" /> 110 <Compile Include="Symbols\Lag.cs" /> 111 <Compile Include="Symbols\MACD.cs" /> 112 <Compile Include="Symbols\MACDTreeNode.cs" /> 113 <Compile Include="Symbols\Max.cs" /> 114 <Compile Include="Symbols\Min.cs" /> 115 <Compile Include="Evaluator\OnlineTradeRulesCalculator.cs" /> 111 116 <Compile Include="Plugin.cs" /> 112 117 <Compile Include="Properties\HeuristicLab.Problems.TradeRules-1.0.cs" /> 113 <Compile Include="RSI.cs" /> 114 <Compile Include="TradeAnalysisProblem.cs" /> 115 <Compile Include="TradeRulesAbstractProblem.cs" /> 116 <Compile Include="TradeRulesProblem.cs" /> 118 <Compile Include="Symbols\RSI.cs" /> 119 <Compile Include="Evaluator\TradeRulesAnalysisEvaluator.cs" /> 120 <Compile Include="Evaluator\TradeRulesAnalysisSingleObjectiveEvaluator.cs" /> 121 <Compile Include="Evaluator\TradeRulesSingleObjectiveEvaluator.cs" /> 122 <Compile Include="Problem\TradeAnalysisProblem.cs" /> 123 <Compile Include="Problem\TradeRulesAbstractProblem.cs" /> 124 <Compile Include="Problem\TradeRulesProblem.cs" /> 125 <Compile Include="TradeRulesSingleObjectiveTrainingBestSolutionAnalyzer.cs" /> 126 <Compile Include="TradeRulesSingleObjectiveValidationBestSolutionAnalyzer.cs" /> 127 <Compile Include="Solution\TradeRulesSolution.cs" /> 128 <Compile Include="Solution\TradeRulesSolutionBase.cs" /> 129 <Compile Include="Solution\TradingRulesSolution.cs" /> 117 130 </ItemGroup> 118 131 <ItemGroup> -
branches/sluengo/HeuristicLab.Problems.TradeRules/Interpreter.cs
r9171 r9262 11 11 using HeuristicLab.Problems.DataAnalysis.Symbolic; 12 12 using HeuristicLab.Problems.DataAnalysis; 13 using System.Threading; 14 using HeuristicLab.Problems.TradeRules.Symbols; 13 15 14 16 namespace HeuristicLab.Problems.TradeRules … … 16 18 [StorableClass] 17 19 [Item("Interpreter", "Represents a grammar for Trading Problems")] 18 public sealed class Interpreter : ParameterizedNamedItem, I SymbolicDataAnalysisExpressionTreeInterpreter20 public sealed class Interpreter : ParameterizedNamedItem, ITradeRulesExpresionTree 19 21 { 20 22 private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic"; 21 23 private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions"; 24 private int initialTraining; 25 private int initialTest; 22 26 [ThreadStatic] 23 private static double [] EMAValue;27 private static Dictionary<ISymbolicExpressionTreeNode, double> signalCache; 24 28 [ThreadStatic] 25 private static double inOut;29 private static Dictionary<ISymbolicExpressionTreeNode, double> firstEMACache; 26 30 [ThreadStatic] 27 private static double meanUp;31 private static Dictionary<ISymbolicExpressionTreeNode, double> secondEMACache; 28 32 [ThreadStatic] 29 private static double meanDown;33 private static Dictionary<ISymbolicExpressionTreeNode, double> RSIPositiveCache; 30 34 [ThreadStatic] 31 private static double lastRSI; 32 33 // [ThreadStatic] 34 // private Dictionary<Instruction, double> lastEMACache; 35 35 private static Dictionary<ISymbolicExpressionTreeNode, double> RSINegativeCache; 36 [ThreadStatic] 37 private static Dictionary<ISymbolicExpressionTreeNode, double> RSICache; 38 [ThreadStatic] 39 private static Dictionary<ISymbolicExpressionTreeNode, double> RSIOutputCache; 40 36 41 #region private classes 37 42 //This class manipulate the instructions of the stack … … 133 138 public const byte Lag = 19; 134 139 public const byte RSI = 20; 135 public const byte EMA = 21;136 137 138 140 } 139 141 #endregion … … 165 167 { typeof(MACD), OpCodes.MACD}, 166 168 { typeof(RSI), OpCodes.RSI}, 167 { typeof(EMA), OpCodes.EMA},168 169 { typeof(Max), OpCodes.Max}, 169 170 { typeof(Min), OpCodes.Min}, … … 251 252 if (row < integerValue) 252 253 { 253 string variableName = dataset.GetValue(row, 2);254 string variableName = dataset.GetValue(row, 3); 254 255 double inferiorValue = Convert.ToDouble(variableName); 255 256 return inferiorValue/(row+1); … … 257 258 else 258 259 { 259 string variableName = dataset.GetValue(row, 2);260 string variableName = dataset.GetValue(row, 3); 260 261 double meanValue1 = Convert.ToDouble(variableName); 261 string variableName2 = dataset.GetValue((row - integerValue), 2);262 string variableName2 = dataset.GetValue((row - integerValue), 3); 262 263 double meanValue2 = Convert.ToDouble(variableName2); 263 264 return (meanValue1 - meanValue2) / integerValue; 264 265 } 265 }266 case OpCodes.MACD:267 {268 /*double firstMean = Evaluate(dataset, ref row, state);269 double secondMean = Evaluate(dataset, ref row, state);270 double signal = Evaluate(dataset, ref row, state);271 double firstEMA = 0.0;272 double secondEMA = 0.0;273 double lastFirstEMA = 0.0;274 double lastSecondEMA = 0.0;275 double macd = 0.0;276 double firstFactor = 0.0;277 double signalValue = Double.NegativeInfinity;278 if (row == (firstMean - 1))279 {280 string variableName = dataset.GetValue(row, 2);281 double meanValue1 = Convert.ToDouble(variableName);282 firstEMA = meanValue1 / firstMean;283 }284 if (row == (secondMean-1))285 {286 string variableName = dataset.GetValue(row, 2);287 double meanValue2 = Convert.ToDouble(variableName);288 secondEMA = meanValue2 / secondMean;289 }290 string variableName2 = dataset.GetValue(row, 1);291 double intValue = Convert.ToDouble(variableName2);292 if (row > (firstMean-1))293 {294 firstFactor = 2 / (firstMean + 1);295 firstEMA = (intValue * firstFactor) + (lastFirstEMA * (1-firstFactor));296 }297 if (row > (secondMean-1))298 {299 double secondFactor = 2 / (secondMean + 1);300 secondEMA = (intValue * secondFactor) + (lastSecondEMA * (1 - secondFactor));301 }302 lastFirstEMA = firstEMA;303 lastSecondEMA = secondEMA;304 macd = firstEMA - secondEMA;305 if ((row < (firstMean-1)) || (row < (secondMean-1))) return 0.0;306 else return macd;*/307 return 0.0;308 309 //macd = firstEMA - secondEMA;310 //if (row == Math.Max(firstMean, secondMean)) signalValue = macd;311 //if (row > firstMean && row > secondMean)312 //{313 // double factor = 2 / (signal + 1);314 // signalValue = (macd * factor) + (lastSignal * (1 - factor));315 //}316 //if (!Double.IsNegativeInfinity(signalValue)) lastSignal = signalValue;317 //return signalValue > macd ? 1.0 : -1.0;318 266 } 319 267 case OpCodes.AND: … … 374 322 return ((IList<double>)currentInstr.iArg0)[row] * variableTreeNode.Weight; 375 323 } 376 case OpCodes.EMA:377 {378 //I assume you want to calculate the EMA as defined at http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average379 //for the mean value saved at position 1 of the dataset380 //and timevalue specifies how many days you want to include in your EMA381 double timeValue = (int)Evaluate(dataset, ref row, state);382 383 // with caching384 // if (lastEmaCache.ContainsKey(currentInst)385 // lastEma = lastEmaCache[currentInstr]386 // else387 // lastEma = 1;388 389 //get all mean values from row - timeValue up to the actual row390 double[] meanValues = dataset.GetDoubleValues("insert variable name", Enumerable.Range(row - (int)timeValue, timeValue)).ToArray();391 392 double EMA = meanValues[0];393 double factor = 2.0 / (timeValue + 1.0);394 395 for (int i = 1; i < timeValue; i++) {396 EMA = meanValues[i] * factor + (1 - factor) * EMA;397 }398 399 // save in cache for next evaluation400 // lastEmaCache[currentInstr] = EMA;401 402 return EMA;403 }404 324 case OpCodes.Constant: 405 325 { … … 425 345 { 426 346 int position = row - i; 427 string variableName = dataset.GetValue(position, 1);347 string variableName = dataset.GetValue(position, 2); 428 348 double intValue = Convert.ToDouble(variableName); 429 349 if (intValue>max) max = intValue; … … 440 360 { 441 361 int position = row - i; 442 string variableName = dataset.GetValue(position, 1);362 string variableName = dataset.GetValue(position, 2); 443 363 double intValue = Convert.ToDouble(variableName); 444 364 if (intValue < min) min = intValue; … … 452 372 if (n>row) return 0; 453 373 int position = row - n; 454 string variableName = dataset.GetValue(position, 1);374 string variableName = dataset.GetValue(position, 2); 455 375 double intValue = Convert.ToDouble(variableName); 456 376 return intValue; 457 377 } 378 case OpCodes.MACD: 379 { 380 var MACDNode = currentInstr.dynamicNode; 381 //Taking the number of the days for each EMA 382 double firstEMA = Evaluate(dataset, ref row, state); 383 double secondEMA = Evaluate(dataset, ref row, state); 384 double signal = Evaluate(dataset, ref row, state); 385 386 //Calculating the factor for each EMA 387 double factor = 2.0 / (firstEMA + 1.0); 388 double factor2 = 2.0 / (secondEMA + 1.0); 389 double factor3 = 2.0 / (signal + 1.0); 390 391 //Initiation of the variables 392 double firstElementEMA = -1000000; 393 double secondElementEMA = -100000; 394 double signalValue = -100000; 395 double macd = 0; 396 397 //Check if this MACD has previous values and retrieve them 398 if (firstEMACache.ContainsKey(MACDNode)) firstElementEMA = firstEMACache[MACDNode]; 399 if (secondEMACache.ContainsKey(MACDNode)) secondElementEMA = secondEMACache[MACDNode]; 400 if (signalCache.ContainsKey(MACDNode)) signalValue = signalCache[MACDNode]; 401 402 //Calculate the first value in the training for the two EMAs and the signal. 403 if (row <= initialTraining || row == initialTest) 404 { 405 double[] meanValues = dataset.GetDoubleValues("\"Close\"", Enumerable.Range(0, (row + 1))).ToArray(); 406 firstElementEMA = meanValues[0]; 407 secondElementEMA = meanValues[0]; 408 double max = (Math.Max(firstEMA, secondEMA) - 1);//The first macd happens when the longest EMA has its first value. We need -1 because row begin in 0. 409 for (int i = 1; i <= row; i++) 410 { 411 firstElementEMA = meanValues[i] * factor + (1 - factor) * firstElementEMA; 412 secondElementEMA = meanValues[i] * factor2 + (1 - factor2) * secondElementEMA; 413 if (i == max) signalValue = firstElementEMA - secondElementEMA;//First signal equals to macd. 414 else if (i > max)//Calculation for the next signals 415 { 416 macd = firstElementEMA - secondElementEMA; 417 signalValue = macd * factor3 + (1 - factor3) * signalValue; 418 } 419 } 420 } 421 else //The rest of the rows are calculating with the standard EMA formula 422 { 423 //Retrieve the dataset values 424 string variableName = dataset.GetValue(row, 2); 425 double meanValue1 = Convert.ToDouble(variableName); 426 427 //Calculating EMA 428 firstElementEMA = meanValue1 * factor + (1 - factor) * firstElementEMA; 429 secondElementEMA = meanValue1 * factor2 + (1 - factor2) * secondElementEMA; 430 431 //Calculating signal 432 macd = firstElementEMA - secondElementEMA; 433 signalValue = macd * factor3 + (1 - factor3) * signalValue; 434 } 435 436 //Save the values for the next iteration 437 firstEMACache[MACDNode] = firstElementEMA; 438 secondEMACache[MACDNode] = secondElementEMA; 439 signalCache[MACDNode] = signalValue; 440 441 macd = firstElementEMA - secondElementEMA; 442 return macd > signalValue ? 1.0 : -1.0; 443 } 458 444 case OpCodes.RSI: 459 { 460 /* 461 double numberOfDays = Evaluate(dataset, ref row, state); 462 double todayRSI=0.0; 463 if (numberOfDays > row) return 0.0; 464 else 465 { 466 double addUp = 0; 467 double addDown = 0; 468 double change=0; 469 if (row == (numberOfDays)) 470 { 471 for (int k = 1; k < (numberOfDays+1); k++) 472 { 473 string variableName = dataset.GetValue(k, 1); 474 double intValue = Convert.ToDouble(variableName); 475 variableName = dataset.GetValue((k - 1), 1); 476 double intValue2 = Convert.ToDouble(variableName); 477 change = intValue - intValue2; 478 if (change > 0) addUp = addUp + change; 479 else addDown = addDown - change; 480 481 } 482 meanUp = addUp / numberOfDays; 483 meanDown = addDown / numberOfDays; 484 if (meanDown != 0) todayRSI = 100 - (100 / (1 + (meanUp / meanDown))); 485 else todayRSI = 100; 486 } 487 else 488 { 489 string variableName = dataset.GetValue(row, 1); 490 double intValue = Convert.ToDouble(variableName); 491 variableName = dataset.GetValue((row - 1), 1); 492 double intValue2 = Convert.ToDouble(variableName); 493 change = intValue - intValue2; 494 495 addUp = meanUp * (numberOfDays - 1); 496 addDown = meanDown * (numberOfDays - 1); 497 if (change > 0) addUp = addUp + change; 498 else addDown = addDown - change; 499 meanUp = addUp / numberOfDays; 500 meanDown = addDown / numberOfDays; 501 if (meanDown != 0) todayRSI = 100 - (100 / (1 + (meanUp / meanDown))); 502 else todayRSI = 100; 503 } 504 } 505 if ((lastRSI < 70) && (todayRSI >= 70)) inOut = 1; 506 else if((lastRSI > 30) && (todayRSI <= 30)) inOut=-1; 507 lastRSI = todayRSI;*/ 508 return 0.0; 509 445 { 446 447 //Taking the number of the days for EMA 448 double numberOfDays = Evaluate(dataset, ref row, state); 449 450 //Calculate the factor for the EMA 451 double factor = 1.0 / numberOfDays; 452 453 double positiveEMA = 0; 454 double negativeEMA = 0; 455 double yesterdayRSI = double.NegativeInfinity; 456 double todayRSI = double.NegativeInfinity; 457 double outputRSI = double.NegativeInfinity; 458 //Retrieve EMA values 459 if (RSIPositiveCache.ContainsKey(currentInstr.dynamicNode)) positiveEMA = RSIPositiveCache[currentInstr.dynamicNode]; 460 if (RSINegativeCache.ContainsKey(currentInstr.dynamicNode)) negativeEMA = RSINegativeCache[currentInstr.dynamicNode]; 461 if (RSICache.ContainsKey(currentInstr.dynamicNode)) yesterdayRSI = RSICache[currentInstr.dynamicNode]; 462 if (RSIOutputCache.ContainsKey(currentInstr.dynamicNode)) outputRSI = RSIOutputCache[currentInstr.dynamicNode]; 463 464 if (row == initialTraining || row == initialTest) 465 { 466 double[] closeValues = dataset.GetDoubleValues("\"Close\"", Enumerable.Range(0, (row + 1))).ToArray(); 467 outputRSI = -1.0; 468 for (int i = 1; i <= row; i++) 469 { 470 if (numberOfDays>=i) 471 { 472 if ((closeValues[i] - closeValues[i - 1]) > 0) positiveEMA = ((closeValues[i] - closeValues[i - 1])+positiveEMA); 473 else negativeEMA = Math.Abs(closeValues[i] - closeValues[i - 1]) + negativeEMA; 474 if (numberOfDays == i) 475 { 476 positiveEMA = positiveEMA/numberOfDays; 477 negativeEMA = negativeEMA / numberOfDays; 478 yesterdayRSI = 100 - (100 / (1 + (positiveEMA / negativeEMA))); 479 } 480 }else{ 481 if ((closeValues[i] - closeValues[i - 1]) > 0) 482 { 483 positiveEMA = (closeValues[i]-closeValues[i-1]) * factor + (1 - factor) * positiveEMA; 484 negativeEMA = 0 * factor + (1 - factor) * negativeEMA; 485 } 486 else 487 { 488 positiveEMA = 0 * factor + (1 - factor) * positiveEMA; 489 negativeEMA = Math.Abs(closeValues[i] - closeValues[i - 1]) * factor + (1 - factor) * negativeEMA; 490 } 491 492 todayRSI = 100 - (100 / (1 + (positiveEMA / negativeEMA))); 493 494 if ((yesterdayRSI < 30) && (todayRSI > 30)) outputRSI = 1.0; 495 else if ((yesterdayRSI > 70) && (todayRSI < 70)) outputRSI = -1.0; 496 yesterdayRSI = todayRSI; 497 } 498 } 499 } 500 else 501 { 502 string todayCloseString = dataset.GetValue(row, 2); 503 string yesterdayCloseString = dataset.GetValue((row - 1), 2); 504 double todayClose = Convert.ToDouble(todayCloseString); 505 double yesterdayClose = Convert.ToDouble(yesterdayCloseString); 506 507 //Calculating EMA 508 if ((todayClose - yesterdayClose) > 0) 509 { 510 positiveEMA = (todayClose-yesterdayClose) * factor + (1 - factor) * positiveEMA; 511 negativeEMA = 0 * factor + (1 - factor) * negativeEMA; 512 } 513 else 514 { 515 positiveEMA = 0 * factor + (1 - factor) * positiveEMA; 516 negativeEMA = Math.Abs(todayClose - yesterdayClose) * factor + (1 - factor) * negativeEMA; 517 } 518 todayRSI = 100 - (100 / (1 + (positiveEMA / negativeEMA))); 519 if ((yesterdayRSI < 30) && (todayRSI > 30)) outputRSI = 1.0; 520 else if ((yesterdayRSI > 70) && (todayRSI < 70)) outputRSI = -1.0; 521 } 522 523 //Save positive and negative EMA for the next iteration 524 RSIPositiveCache[currentInstr.dynamicNode] = positiveEMA; 525 RSINegativeCache[currentInstr.dynamicNode] = negativeEMA; 526 RSICache[currentInstr.dynamicNode] = todayRSI; 527 RSIOutputCache[currentInstr.dynamicNode] = outputRSI; 528 529 return outputRSI; 510 530 } 511 531 … … 553 573 Parameters.Add(new ValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0))); 554 574 } 555 575 public void setInitialTraining(int initialTraining) 576 { 577 this.initialTraining = initialTraining; 578 } 579 580 public void setInitialTest(int initialTest) 581 { 582 this.initialTest = initialTest; 583 } 584 585 public void clearVariables() 586 { 587 signalCache.Clear(); 588 firstEMACache.Clear(); 589 secondEMACache.Clear(); 590 RSIPositiveCache.Clear(); 591 RSINegativeCache.Clear(); 592 RSICache.Clear(); 593 RSIOutputCache.Clear(); 594 } 595 556 596 //Take the symbolic expression values of the tree 557 597 public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, IEnumerable<int> rows) 558 598 { 559 599 if (CheckExpressionsWithIntervalArithmetic.Value) 560 600 throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter."); 561 601 EvaluatedSolutions.Value++; // increment the evaluated solutions counter 562 602 var compiler = new SymbolicExpressionTreeCompiler(); … … 572 612 code[i] = instr; 573 613 } 574 else if (instr.opCode == OpCodes.EMA) 575 { 576 instr.iArg0 = EMAValue; 614 } 615 616 617 if (signalCache == null) signalCache = new Dictionary<ISymbolicExpressionTreeNode, double>(); 618 if (firstEMACache == null) firstEMACache = new Dictionary<ISymbolicExpressionTreeNode, double>(); 619 if (secondEMACache == null) secondEMACache = new Dictionary<ISymbolicExpressionTreeNode, double>(); 620 if (RSIPositiveCache == null) RSIPositiveCache = new Dictionary<ISymbolicExpressionTreeNode, double>(); 621 if (RSINegativeCache == null) RSINegativeCache = new Dictionary<ISymbolicExpressionTreeNode, double>(); 622 if (RSICache == null) RSICache = new Dictionary<ISymbolicExpressionTreeNode, double>(); 623 if (RSIOutputCache == null) RSIOutputCache = new Dictionary<ISymbolicExpressionTreeNode, double>(); 624 625 626 var state = new InterpreterState(code, necessaryArgStackSize); 627 //Evaluate each row of the datase 628 foreach (var rowEnum in rows) 629 { 630 int row = rowEnum; 631 state.Reset(); 632 if (row < initialTraining) yield return -1; 633 else yield return Evaluate(dataset, ref row, state); 634 } 577 635 } 578 }579 580 // with caching581 // if (lastEmaCache == null) lastEmaCache = new Dictionary<Instruction, double>();582 // else lastEmaCache.Clear();583 584 var state = new InterpreterState(code, necessaryArgStackSize);585 //Evaluate each row of the datase586 foreach (var rowEnum in rows)587 {588 int row = rowEnum;589 state.Reset();590 yield return Evaluate(dataset, ref row, state);591 }592 636 } 593 637 594 638 } 595 } 639
Note: See TracChangeset
for help on using the changeset viewer.