Changeset 9112 for branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression
- Timestamp:
- 01/04/13 22:34:57 (12 years ago)
- Location:
- branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression
- Files:
-
- 1 added
- 12 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessPolyTen.cs
r9099 r9112 42 42 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 protected override int TrainingPartitionEnd { get { return 250; } }45 protected override int TestPartitionStart { get { return 250; } }46 protected override int TestPartitionEnd { get { return 500; } }44 protected override int TrainingPartitionEnd { get { return 500; } } 45 protected override int TestPartitionStart { get { return 500; } } 46 protected override int TestPartitionEnd { get { return 1000; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { … … 129 129 covarianceFunction.Terms.Add(t5); 130 130 131 var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, AllowedInputVariables.Count()));131 var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, null); 132 132 133 133 -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso.cs
r9099 r9112 59 59 covarianceFunction.GetParameterizedCovarianceFunction( 60 60 new double[] { Math.Log(0.1), Math.Log(Math.Sqrt(1)), Math.Log(Math.Sqrt(0.01)) }, 61 Enumerable.Range(0, AllowedInputVariables.Count()));61 null); 62 62 63 63 var mt = new MersenneTwister(31415); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso1.cs
r9099 r9112 41 41 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } 42 42 protected override int TrainingPartitionStart { get { return 0; } } 43 protected override int TrainingPartitionEnd { get { return 50; } }44 protected override int TestPartitionStart { get { return 50; } }45 protected override int TestPartitionEnd { get { return 100; } }43 protected override int TrainingPartitionEnd { get { return 250; } } 44 protected override int TestPartitionStart { get { return 250; } } 45 protected override int TestPartitionEnd { get { return 500; } } 46 46 47 47 protected override List<List<double>> GenerateValues() { … … 66 66 covFun.Terms.Add(new CovarianceNoise()); 67 67 68 var cov = covFun.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, AllowedInputVariables.Count()));68 var cov = covFun.GetParameterizedCovarianceFunction(hyp, null); 69 69 var mt = new MersenneTwister(); 70 70 var target = Util.SampleGaussianProcess(mt, cov, data); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso2.cs
r9099 r9112 41 41 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } 42 42 protected override int TrainingPartitionStart { get { return 0; } } 43 protected override int TrainingPartitionEnd { get { return 50; } }44 protected override int TestPartitionStart { get { return 50; } }45 protected override int TestPartitionEnd { get { return 100; } }43 protected override int TrainingPartitionEnd { get { return 250; } } 44 protected override int TestPartitionStart { get { return 250; } } 45 protected override int TestPartitionEnd { get { return 500; } } 46 46 47 47 protected override List<List<double>> GenerateValues() { … … 70 70 covFun.Terms.Add(m2); 71 71 covFun.Terms.Add(new CovarianceNoise()); 72 var cov = covFun.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, AllowedInputVariables.Count()));72 var cov = covFun.GetParameterizedCovarianceFunction(hyp, null); 73 73 74 74 var mt = new MersenneTwister(); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso3.cs
r9099 r9112 41 41 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } 42 42 protected override int TrainingPartitionStart { get { return 0; } } 43 protected override int TrainingPartitionEnd { get { return 50; } }44 protected override int TestPartitionStart { get { return 50; } }45 protected override int TestPartitionEnd { get { return 100; } }43 protected override int TrainingPartitionEnd { get { return 250; } } 44 protected override int TestPartitionStart { get { return 250; } } 45 protected override int TestPartitionEnd { get { return 500; } } 46 46 47 47 protected override List<List<double>> GenerateValues() { … … 75 75 covFun.Terms.Add(m3); 76 76 covFun.Terms.Add(new CovarianceNoise()); 77 var cov = covFun.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, AllowedInputVariables.Count()));77 var cov = covFun.GetParameterizedCovarianceFunction(hyp, null); 78 78 79 79 var mt = new MersenneTwister(); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso4.cs
r9099 r9112 41 41 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } 42 42 protected override int TrainingPartitionStart { get { return 0; } } 43 protected override int TrainingPartitionEnd { get { return 50; } }44 protected override int TestPartitionStart { get { return 50; } }45 protected override int TestPartitionEnd { get { return 100; } }43 protected override int TrainingPartitionEnd { get { return 250; } } 44 protected override int TestPartitionStart { get { return 250; } } 45 protected override int TestPartitionEnd { get { return 500; } } 46 46 47 47 protected override List<List<double>> GenerateValues() { … … 66 66 covFun.Terms.Add(new CovarianceNoise()); 67 67 68 var cov = covFun.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, AllowedInputVariables.Count()));68 var cov = covFun.GetParameterizedCovarianceFunction(hyp, null); 69 69 var mt = new MersenneTwister(); 70 70 var target = Util.SampleGaussianProcess(mt, cov, data); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso5.cs
r9099 r9112 41 41 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } 42 42 protected override int TrainingPartitionStart { get { return 0; } } 43 protected override int TrainingPartitionEnd { get { return 50; } }44 protected override int TestPartitionStart { get { return 50; } }45 protected override int TestPartitionEnd { get { return 100; } }43 protected override int TrainingPartitionEnd { get { return 250; } } 44 protected override int TestPartitionStart { get { return 250; } } 45 protected override int TestPartitionEnd { get { return 500; } } 46 46 47 47 protected override List<List<double>> GenerateValues() { … … 69 69 covFun.Terms.Add(m2); 70 70 covFun.Terms.Add(new CovarianceNoise()); 71 var cov = covFun.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, AllowedInputVariables.Count()));71 var cov = covFun.GetParameterizedCovarianceFunction(hyp, null); 72 72 73 73 var mt = new MersenneTwister(); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso6.cs
r9099 r9112 41 41 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } 42 42 protected override int TrainingPartitionStart { get { return 0; } } 43 protected override int TrainingPartitionEnd { get { return 50; } }44 protected override int TestPartitionStart { get { return 50; } }45 protected override int TestPartitionEnd { get { return 100; } }43 protected override int TrainingPartitionEnd { get { return 250; } } 44 protected override int TestPartitionStart { get { return 250; } } 45 protected override int TestPartitionEnd { get { return 500; } } 46 46 47 47 protected override List<List<double>> GenerateValues() { … … 80 80 covFun.Terms.Add(m4); 81 81 covFun.Terms.Add(new CovarianceNoise()); 82 var cov = covFun.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, AllowedInputVariables.Count()));82 var cov = covFun.GetParameterizedCovarianceFunction(hyp, null); 83 83 84 84 -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIsoDependentNoise.cs
r9099 r9112 41 41 protected override string[] AllowedInputVariables { get { return new string[] { "X1" }; } } 42 42 protected override int TrainingPartitionStart { get { return 0; } } 43 protected override int TrainingPartitionEnd { get { return 100; } }44 protected override int TestPartitionStart { get { return 100; } }45 protected override int TestPartitionEnd { get { return 200; } }43 protected override int TrainingPartitionEnd { get { return 250; } } 44 protected override int TestPartitionStart { get { return 250; } } 45 protected override int TestPartitionEnd { get { return 500; } } 46 46 47 47 protected override List<List<double>> GenerateValues() { … … 56 56 covarianceFunction.Terms.Add(new CovarianceSquaredExponentialIso()); 57 57 var prod = new CovarianceProduct(); 58 prod.Factors.Add(new Covariance SquaredExponentialIso());58 prod.Factors.Add(new CovarianceLinear()); 59 59 prod.Factors.Add(new CovarianceNoise()); 60 60 covarianceFunction.Terms.Add(prod); … … 63 63 { 64 64 Math.Log(0.1), Math.Log(Math.Sqrt(1)), // SE iso 65 Math.Log(0.5), Math.Log(Math.Sqrt(1)), // SE iso for noise 66 Math.Log(Math.Sqrt(0.1)), // dependent noise 65 Math.Log(Math.Sqrt(0.5)), // dependent noise 67 66 Math.Log(Math.Sqrt(0.01)) // noise 68 67 }; 69 var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, AllowedInputVariables.Count()));68 var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, null); 70 69 71 70 var mt = new MersenneTwister(31415); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/Instances.DataAnalysis.GaussianProcessRegression-3.3.csproj
r9099 r9112 26 26 <DebugType>pdbonly</DebugType> 27 27 <Optimize>true</Optimize> 28 <OutputPath>..\..\ bin\</OutputPath>28 <OutputPath>..\..\..\trunk\sources\bin\</OutputPath> 29 29 <DefineConstants>TRACE</DefineConstants> 30 30 <ErrorReport>prompt</ErrorReport> … … 52 52 </PropertyGroup> 53 53 <PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Release|x86'"> 54 <OutputPath>..\..\ bin\</OutputPath>54 <OutputPath>..\..\..\trunk\sources\bin\</OutputPath> 55 55 <DefineConstants>TRACE</DefineConstants> 56 56 <Optimize>true</Optimize> … … 82 82 </PropertyGroup> 83 83 <PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Release|x64'"> 84 <OutputPath>..\..\ bin\</OutputPath>84 <OutputPath>..\..\..\trunk\sources\bin\</OutputPath> 85 85 <DefineConstants>TRACE</DefineConstants> 86 86 <Optimize>true</Optimize> … … 178 178 </ItemGroup> 179 179 <ItemGroup> 180 <Compile Include="GaussianProcessRegressionInstance.cs" /> 180 181 <Compile Include="GaussianProcessSEIso6.cs" /> 181 182 <Compile Include="GaussianProcessSEIso1.cs" /> -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/Plugin.cs.frame
r8879 r9112 26 26 [PluginFile("HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression-3.3.dll", PluginFileType.Assembly)] 27 27 [PluginDependency("HeuristicLab.ALGLIB", "3.6.0")] 28 [PluginDependency("HeuristicLab.Algorithm .DataAnalysis", "3.4")]28 [PluginDependency("HeuristicLab.Algorithms.DataAnalysis", "3.4")] 29 29 [PluginDependency("HeuristicLab.Collections", "3.3")] 30 30 [PluginDependency("HeuristicLab.Common", "3.3")] -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/VariousInstanceProvider.cs
r8879 r9112 22 22 using System; 23 23 using System.Collections.Generic; 24 using HeuristicLab.Algorithms.DataAnalysis; 24 25 25 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { … … 49 50 descriptorList.Add(new GaussianProcessPolyTen()); 50 51 descriptorList.Add(new GaussianProcessSEIsoDependentNoise()); 52 53 var covs = new ICovarianceFunction[] { 54 new CovarianceSquaredExponentialIso(), 55 new CovarianceSquaredExponentialArd(), 56 new CovarianceLinear(), 57 new CovarianceLinearArd(), 58 new CovarianceMaternIso(), 59 new CovariancePeriodic(), 60 new CovarianceRationalQuadraticArd(), 61 new CovarianceRationalQuadraticIso() 62 }; 63 foreach (var cov in covs) { 64 descriptorList.Add(new GaussianProcessRegressionInstance(cov)); 65 } 66 51 67 return descriptorList; 52 68 }
Note: See TracChangeset
for help on using the changeset viewer.