Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
12/27/12 19:14:51 (12 years ago)
Author:
sforsten
Message:

#1980:

  • added ConditionActionClassificationProblem
  • added ConditionActionEncoding
  • added Manipulators, Crossovers and an LCSAdaptedGeneticAlgorithm
  • changed LearningClassifierSystemMainLoop
Location:
branches/LearningClassifierSystems
Files:
1 added
6 edited

Legend:

Unmodified
Added
Removed
  • branches/LearningClassifierSystems

    • Property svn:ignore set to
      *.suo
  • branches/LearningClassifierSystems/HeuristicLab.Algorithms.LearningClassifierSystems/3.3

    • Property svn:ignore set to
      *.user
      Plugin.cs
  • branches/LearningClassifierSystems/HeuristicLab.Algorithms.LearningClassifierSystems/3.3/HeuristicLab.Algorithms.LearningClassifierSystems-3.3.csproj

    r8941 r9089  
    9696  </ItemGroup>
    9797  <ItemGroup>
    98     <Compile Include="ActionSelection\ActionSelector.cs" />
    99     <Compile Include="ActionSelection\MaxValueActionSelector.cs" />
    100     <Compile Include="ActionSelection\RandomActionSelector.cs" />
     98    <Compile Include="LCSAdaptedGeneticAlgorithm.cs" />
    10199    <Compile Include="LearningClassifierSystem.cs" />
    102100    <Compile Include="LearningClassifierSystemMainLoop.cs" />
    103101    <Compile Include="Properties\AssemblyInfo.cs" />
    104102    <Compile Include="Plugin.cs" />
    105     <Compile Include="Selectors\IMatchSelector.cs" />
    106     <Compile Include="Selectors\MatchSelector.cs" />
    107103    <None Include="Properties\AssemblyInfo.cs.frame" />
    108104  </ItemGroup>
     
    115111      <Project>{CE7163C5-BFFE-45F0-9BD0-E10EF24E8BD2}</Project>
    116112      <Name>HeuristicLab.Encodings.CombinedIntegerVectorEncoding-3.3</Name>
     113    </ProjectReference>
     114    <ProjectReference Include="..\..\HeuristicLab.Encodings.ConditionActionEncoding\3.3\HeuristicLab.Encodings.ConditionActionEncoding-3.3.csproj">
     115      <Project>{422FB262-0845-4969-8D16-12F057AA90B1}</Project>
     116      <Name>HeuristicLab.Encodings.ConditionActionEncoding-3.3</Name>
     117    </ProjectReference>
     118    <ProjectReference Include="..\..\HeuristicLab.Problems.ConditionActionClassification\3.3\HeuristicLab.Problems.ConditionActionClassification-3.3.csproj">
     119      <Project>{EA51D441-F6A3-41E1-9993-A2488E93C222}</Project>
     120      <Name>HeuristicLab.Problems.ConditionActionClassification-3.3</Name>
    117121    </ProjectReference>
    118122  </ItemGroup>
  • branches/LearningClassifierSystems/HeuristicLab.Algorithms.LearningClassifierSystems/3.3/LearningClassifierSystem.cs

    r8941 r9089  
    2424using HeuristicLab.Core;
    2525using HeuristicLab.Data;
    26 using HeuristicLab.Encodings.CombinedIntegerVectorEncoding;
    27 using HeuristicLab.Operators;
     26using HeuristicLab.Encodings.ConditionActionEncoding;
    2827using HeuristicLab.Optimization;
    29 using HeuristicLab.Optimization.Operators;
    3028using HeuristicLab.Parameters;
    3129using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     
    3937  [Creatable("Algorithms")]
    4038  [StorableClass]
    41   public class LearningClassifierSystem : HeuristicOptimizationEngineAlgorithm, IStorableContent {
     39  public sealed class LearningClassifierSystem : HeuristicOptimizationEngineAlgorithm, IStorableContent {
    4240    public string Filename { get; set; }
    4341
    4442    #region Problem Properties
    4543    public override Type ProblemType {
    46       get { return typeof(ISingleObjectiveHeuristicOptimizationProblem); }
    47     }
    48     public new ISingleObjectiveHeuristicOptimizationProblem Problem {
    49       get { return (ISingleObjectiveHeuristicOptimizationProblem)base.Problem; }
     44      get { return typeof(IConditionActionProblem); }
     45    }
     46    public new IConditionActionProblem Problem {
     47      get { return (IConditionActionProblem)base.Problem; }
    5048      set { base.Problem = value; }
    5149    }
     
    5957      get { return (ValueParameter<BoolValue>)Parameters["SetSeedRandomly"]; }
    6058    }
     59    private ValueParameter<BoolValue> CreateInitialPopulationParameter {
     60      get { return (ValueParameter<BoolValue>)Parameters["CreateInitialPopulation"]; }
     61    }
    6162    private ValueParameter<IntValue> PopulationSizeParameter {
    62       get { return (ValueParameter<IntValue>)Parameters["PopulationSize"]; }
    63     }
    64     //for test purpose
    65     public ValueParameter<ICombinedIntegerVectorCreator> SolutionCreatorParameter {
    66       get { return (ValueParameter<ICombinedIntegerVectorCreator>)Parameters["SolutionCreator"]; }
    67     }
    68     public ValueParameter<IntValue> Length {
    69       get { return (ValueParameter<IntValue>)Parameters["Length"]; }
    70     }
    71     public ValueParameter<IntValue> ActionPartLength {
    72       get { return (ValueParameter<IntValue>)Parameters["ActionPartLength"]; }
    73     }
    74     public ValueParameter<IntMatrix> Bounds {
    75       get { return (ValueParameter<IntMatrix>)Parameters["Bounds"]; }
     63      get { return (ValueParameter<IntValue>)Parameters["N"]; }
     64    }
     65    private ValueParameter<PercentValue> BetaParameter {
     66      get { return (ValueParameter<PercentValue>)Parameters["Beta"]; }
     67    }
     68    private ValueParameter<PercentValue> AlphaParameter {
     69      get { return (ValueParameter<PercentValue>)Parameters["Alpha"]; }
     70    }
     71    private ValueParameter<DoubleValue> ErrorZeroParameter {
     72      get { return (ValueParameter<DoubleValue>)Parameters["ErrorZero"]; }
     73    }
     74    private ValueParameter<DoubleValue> PowerParameter {
     75      get { return (ValueParameter<DoubleValue>)Parameters["v"]; }
     76    }
     77    private ValueParameter<PercentValue> GammaParameter {
     78      get { return (ValueParameter<PercentValue>)Parameters["Gamma"]; }
     79    }
     80    private ValueParameter<PercentValue> CrossoverProbabilityParameter {
     81      get { return (ValueParameter<PercentValue>)Parameters["CrossoverProbability"]; }
     82    }
     83    private ValueParameter<PercentValue> MutationProbabilityParameter {
     84      get { return (ValueParameter<PercentValue>)Parameters["MutationProbability"]; }
     85    }
     86    private ValueParameter<IntValue> ThetaGAParameter {
     87      get { return (ValueParameter<IntValue>)Parameters["ThetaGA"]; }
     88    }
     89    private ValueParameter<IntValue> ThetaDeletionParameter {
     90      get { return (ValueParameter<IntValue>)Parameters["ThetaDeletion"]; }
     91    }
     92    private ValueParameter<IntValue> ThetaSubsumptionParameter {
     93      get { return (ValueParameter<IntValue>)Parameters["ThetaSubsumption"]; }
     94    }
     95    private ValueParameter<PercentValue> DeltaParameter {
     96      get { return (ValueParameter<PercentValue>)Parameters["Delta"]; }
     97    }
     98    private ValueParameter<PercentValue> ExplorationProbabilityParameter {
     99      get { return (ValueParameter<PercentValue>)Parameters["ExplorationProbability"]; }
     100    }
     101    private ValueParameter<BoolValue> DoGASubsumptionParameter {
     102      get { return (ValueParameter<BoolValue>)Parameters["DoGASubsumption"]; }
     103    }
     104    private ValueParameter<BoolValue> DoActionSetSubsumptionParameter {
     105      get { return (ValueParameter<BoolValue>)Parameters["DoActionSetSubsumption"]; }
    76106    }
    77107    #endregion
     
    86116      set { SetSeedRandomlyParameter.Value = value; }
    87117    }
     118    public BoolValue CreateInitialPopulation {
     119      get { return CreateInitialPopulationParameter.Value; }
     120      set { CreateInitialPopulationParameter.Value = value; }
     121    }
    88122    public IntValue PopulationSize {
    89123      get { return PopulationSizeParameter.Value; }
    90124      set { PopulationSizeParameter.Value = value; }
    91125    }
    92 
     126    public PercentValue Beta {
     127      get { return BetaParameter.Value; }
     128      set { BetaParameter.Value = value; }
     129    }
     130    public PercentValue Alpha {
     131      get { return AlphaParameter.Value; }
     132      set { AlphaParameter.Value = value; }
     133    }
     134    public DoubleValue ErrorZero {
     135      get { return ErrorZeroParameter.Value; }
     136      set { ErrorZeroParameter.Value = value; }
     137    }
     138    public DoubleValue Power {
     139      get { return PowerParameter.Value; }
     140      set { PowerParameter.Value = value; }
     141    }
     142    public PercentValue Gamma {
     143      get { return GammaParameter.Value; }
     144      set { GammaParameter.Value = value; }
     145    }
     146    public PercentValue CrossoverProbability {
     147      get { return CrossoverProbabilityParameter.Value; }
     148      set { CrossoverProbabilityParameter.Value = value; }
     149    }
     150    public PercentValue MutationProbability {
     151      get { return MutationProbabilityParameter.Value; }
     152      set { MutationProbabilityParameter.Value = value; }
     153    }
     154    public IntValue ThetaGA {
     155      get { return ThetaGAParameter.Value; }
     156      set { ThetaGAParameter.Value = value; }
     157    }
     158    public IntValue ThetaDeletion {
     159      get { return ThetaDeletionParameter.Value; }
     160      set { ThetaDeletionParameter.Value = value; }
     161    }
     162    public IntValue ThetaSubsumption {
     163      get { return ThetaSubsumptionParameter.Value; }
     164      set { ThetaSubsumptionParameter.Value = value; }
     165    }
     166    public PercentValue Delta {
     167      get { return DeltaParameter.Value; }
     168      set { DeltaParameter.Value = value; }
     169    }
     170    public PercentValue ExplorationProbability {
     171      get { return ExplorationProbabilityParameter.Value; }
     172      set { ExplorationProbabilityParameter.Value = value; }
     173    }
     174    public BoolValue DoGASubsumption {
     175      get { return DoGASubsumptionParameter.Value; }
     176      set { DoGASubsumptionParameter.Value = value; }
     177    }
     178    public BoolValue DoActionSetSubsumption {
     179      get { return DoActionSetSubsumptionParameter.Value; }
     180      set { DoActionSetSubsumptionParameter.Value = value; }
     181    }
     182    private RandomCreator RandomCreator {
     183      get { return (RandomCreator)OperatorGraph.InitialOperator; }
     184    }
     185    public LearningClassifierSystemMainLoop MainLoop {
     186      get { return (LearningClassifierSystemMainLoop)RandomCreator.Successor; }
     187    }
    93188    #endregion
    94189
     
    98193      Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
    99194      Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
    100       Parameters.Add(new ValueParameter<IntValue>("PopulationSize", "The size of the population of solutions.", new IntValue(100)));
    101       //for test purpose
    102       Parameters.Add(new ValueParameter<ICombinedIntegerVectorCreator>("SolutionCreator", "The operator to create a solution.", new UniformRandomCombinedIntegerVectorCreator()));
    103       Parameters.Add(new ValueParameter<IntValue>("Length", "The operator to create a solution.", new IntValue(3)));
    104       Parameters.Add(new ValueParameter<IntValue>("ActionPartLength", "The operator to create a solution.", new IntValue(1)));
    105       int[,] elements = new int[,] { { 0, 3 }, { 0, 3 }, { 0, 2 } };
    106       Parameters.Add(new ValueParameter<IntMatrix>("Bounds", "The operator to create a solution.", new IntMatrix(elements)));
     195      Parameters.Add(new ValueParameter<BoolValue>("CreateInitialPopulation", "Specifies if a population should be created at the beginning of the algorithm.", new BoolValue(false)));
     196      Parameters.Add(new ValueParameter<IntValue>("N", "Max size of the population of solutions.", new IntValue(100)));
     197      Parameters.Add(new ValueParameter<PercentValue>("Beta", "Learning rate", new PercentValue(0.1)));
     198      Parameters.Add(new ValueParameter<PercentValue>("Alpha", "", new PercentValue(0.1)));
     199      Parameters.Add(new ValueParameter<DoubleValue>("ErrorZero", "The error below which classifiers are considered to have equal accuracy", new DoubleValue(10)));
     200      Parameters.Add(new ValueParameter<DoubleValue>("v", "Power parameter", new DoubleValue(5)));
     201      Parameters.Add(new ValueParameter<PercentValue>("Gamma", "Discount factor", new PercentValue(0.71)));
     202      Parameters.Add(new ValueParameter<PercentValue>("CrossoverProbability", "Probability of crossover", new PercentValue(0.9)));
     203      Parameters.Add(new ValueParameter<PercentValue>("MutationProbability", "Probability of mutation", new PercentValue(0.05)));
     204      Parameters.Add(new ValueParameter<IntValue>("ThetaGA", "GA threshold. GA is applied in a set when the average time since the last GA is greater than ThetaGA.", new IntValue(25)));
     205      Parameters.Add(new ValueParameter<IntValue>("ThetaDeletion", "Deletion threshold. If the experience of a classifier is greater than ThetaDeletion, its fitness may be considered in its probability of deletion.", new IntValue(20)));
     206      Parameters.Add(new ValueParameter<IntValue>("ThetaSubsumption", "Subsumption threshold. The experience of a classifier must be greater than TheatSubsumption to be able to subsume another classifier.", new IntValue(20)));
     207      Parameters.Add(new ValueParameter<PercentValue>("Delta", "Delta specifies the fraction of mean fitness in [P] below which the fitness of a classifier may be considered in its probability of deletion", new PercentValue(0.1)));
     208      Parameters.Add(new ValueParameter<PercentValue>("ExplorationProbability", "Probability of selecting the action uniform randomly", new PercentValue(0.5)));
     209      Parameters.Add(new ValueParameter<BoolValue>("DoGASubsumption", "Specifies if offsprings are tested for possible logical subsumption by parents.", new BoolValue(true)));
     210      Parameters.Add(new ValueParameter<BoolValue>("DoActionSetSubsumption", "Specifies if action set is tested for subsuming classifiers.", new BoolValue(true)));
    107211      #endregion
    108212
    109213      #region Create operators
    110214      RandomCreator randomCreator = new RandomCreator();
    111       SolutionsCreator solutionsCreator = new SolutionsCreator();
    112       UniformSubScopesProcessor uniformSubScopeProcessor = new UniformSubScopesProcessor();
    113       UniformRandomizer uniformRandomizer = new UniformRandomizer();
     215
    114216      //ResultsCollector resultsCollector = new ResultsCollector();
    115217      LearningClassifierSystemMainLoop mainLoop = new LearningClassifierSystemMainLoop();
     
    120222      randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
    121223      randomCreator.SetSeedRandomlyParameter.Value = null;
    122 
    123       SolutionCreatorParameter.Value.ActionPartLengthParameter.ActualName = ActionPartLength.Name;
    124       SolutionCreatorParameter.Value.LengthParameter.ActualName = Length.Name;
    125       SolutionCreatorParameter.Value.BoundsParameter.ActualName = Bounds.Name;
    126 
    127       solutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
    128       solutionsCreator.SolutionCreatorParameter.ActualName = SolutionCreatorParameter.Name;
    129 
    130       uniformSubScopeProcessor.Parallel = new BoolValue(true);
    131 
    132       uniformRandomizer.RandomParameter.ActualName = randomCreator.RandomParameter.ActualName;
    133       uniformRandomizer.MinParameter.Value = new DoubleValue(0);
    134       uniformRandomizer.MaxParameter.Value = new DoubleValue(100);
    135       uniformRandomizer.ValueParameter.ActualName = "Fitness";
    136 
    137224      #endregion
    138225
    139226      #region Create operator graph
    140227      OperatorGraph.InitialOperator = randomCreator;
    141       randomCreator.Successor = solutionsCreator;
    142       solutionsCreator.Successor = uniformSubScopeProcessor;
    143       uniformSubScopeProcessor.Operator = uniformRandomizer;
    144       uniformSubScopeProcessor.Successor = mainLoop;
     228      randomCreator.Successor = mainLoop;
    145229      #endregion
    146230    }
    147     protected LearningClassifierSystem(LearningClassifierSystem original, Cloner cloner)
     231    private LearningClassifierSystem(LearningClassifierSystem original, Cloner cloner)
    148232      : base(original, cloner) {
    149233    }
     
    153237    [StorableConstructor]
    154238    private LearningClassifierSystem(bool deserializing) : base(deserializing) { }
     239
     240    protected override void OnProblemChanged() {
     241      if (Problem != null) {
     242        ParameterizeEvaluator(Problem.Evaluator);
     243        MainLoop.SetCurrentProblem(Problem);
     244      }
     245      base.OnProblemChanged();
     246    }
     247    protected override void Problem_EvaluatorChanged(object sender, EventArgs e) {
     248      ParameterizeEvaluator(Problem.Evaluator);
     249      MainLoop.SetCurrentProblem(Problem);
     250      base.Problem_EvaluatorChanged(sender, e);
     251    }
     252    protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) {
     253      MainLoop.SetCurrentProblem(Problem);
     254      base.Problem_SolutionCreatorChanged(sender, e);
     255    }
     256
     257    private void ParameterizeEvaluator(IXCSEvaluator evaluator) {
     258      evaluator.ActualTimeParameter.ActualName = "Iteration";
     259      evaluator.BetaParameter.ActualName = BetaParameter.Name;
     260      evaluator.AlphaParameter.ActualName = AlphaParameter.Name;
     261      evaluator.PowerParameter.ActualName = PowerParameter.Name;
     262      evaluator.ErrorZeroParameter.ActualName = ErrorZeroParameter.Name;
     263    }
    155264  }
    156265}
  • branches/LearningClassifierSystems/HeuristicLab.Algorithms.LearningClassifierSystems/3.3/LearningClassifierSystemMainLoop.cs

    r8941 r9089  
    2020#endregion
    2121
    22 using HeuristicLab.Algorithms.GeneticAlgorithm;
    2322using HeuristicLab.Common;
    2423using HeuristicLab.Core;
    2524using HeuristicLab.Data;
    26 using HeuristicLab.Encodings.CombinedIntegerVectorEncoding;
     25using HeuristicLab.Encodings.ConditionActionEncoding;
    2726using HeuristicLab.Encodings.IntegerVectorEncoding;
    2827using HeuristicLab.Operators;
     
    3130using HeuristicLab.Parameters;
    3231using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    33 using HeuristicLab.Random;
    3432using HeuristicLab.Selection;
    3533
     
    4038  [Item("LearningClassifierSystemMainLoop", "An operator which represents the main loop of a learning classifier system.")]
    4139  [StorableClass]
    42   public class LearningClassifierSystemMainLoop : AlgorithmOperator {
     40  public sealed class LearningClassifierSystemMainLoop : AlgorithmOperator {
    4341
    4442    #region Parameter Properties
     
    5452    #endregion
    5553
    56     #region Properties
    57     public ISelector Selector {
    58       get { return SelectorParameter.Value; }
    59       set { SelectorParameter.Value = value; }
    60     }
    61     public ICrossover Crossover {
    62       get { return CrossoverParameter.Value; }
    63       set { CrossoverParameter.Value = value; }
    64     }
    65     public IManipulator Mutator {
    66       get { return MutatorParameter.Value; }
    67       set { MutatorParameter.Value = value; }
    68     }
     54    #region private properties
     55    private SolutionsCreator initialSolutionsCreator;
     56    private SolutionsCreator coveringMechanism;
     57    private MatchConditionOperator matchConditionOperator;
     58    private PredictionArrayCalculator predictionArrayCalculator;
     59    private ActionSelector actionSelector;
     60
     61    private Placeholder evaluator;
     62    private Placeholder actionExecuter;
     63    private Placeholder classifierFetcher;
    6964    #endregion
    7065
    7166    [StorableConstructor]
    7267    private LearningClassifierSystemMainLoop(bool deserializing) : base(deserializing) { }
    73     protected LearningClassifierSystemMainLoop(LearningClassifierSystemMainLoop original, Cloner cloner)
     68    private LearningClassifierSystemMainLoop(LearningClassifierSystemMainLoop original, Cloner cloner)
    7469      : base(original, cloner) {
    7570    }
     
    8580      #region Create parameters
    8681      Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions for reproduction.", new ItemSet<ISelector>() { new ProportionalSelector() }, new ProportionalSelector()));
    87       Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions.", new ItemSet<ICrossover>() { new SinglePointCrossover() }, new SinglePointCrossover()));
    88       Parameters.Add(new OptionalConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions.", new ItemSet<IManipulator>() { new UniformOnePositionManipulator() }, new UniformOnePositionManipulator()));
    89       //for test purposes
    90       int[] numbers = new int[3] { 1, 1, 1 };
    91       int[,] elements = new int[,] { { 0, 3 }, { 0, 3 }, { 0, 2 } };
    92       Parameters.Add(new ValueLookupParameter<CombinedIntegerVector>("TestTarget", "Target for test", new CombinedIntegerVector(numbers, 1, elements)));
    93 
     82      Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions.", new ItemSet<ICrossover>() { new HeuristicLab.Encodings.CombinedIntegerVectorEncoding.SinglePointCrossover() }, new HeuristicLab.Encodings.CombinedIntegerVectorEncoding.SinglePointCrossover()));
     83      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
     84      UniformOnePositionManipulator test = new UniformOnePositionManipulator();
     85      test.IntegerVectorParameter.ActualName = "CombinedIntegerVector";
     86      Parameters.Add(new OptionalConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions.", new ItemSet<IManipulator>() { new UniformOnePositionManipulator() }, test));
    9487      #endregion
    9588
    9689      #region Create operators
    9790      VariableCreator variableCreator = new VariableCreator();
    98       MatchSelector conditionMatchSelector = new MatchSelector();
    99       MatchSelector actionMatchSelector = new MatchSelector();
     91      ConditionalBranch initialPopulationConditionalBranch = new ConditionalBranch();
     92      initialSolutionsCreator = new SolutionsCreator();
     93      IntCounter iterationCounter = new IntCounter();
     94      UniformSubScopesProcessor matchCondtionSubScopesProcessor = new UniformSubScopesProcessor();
     95      matchConditionOperator = new MatchConditionOperator();
     96      predictionArrayCalculator = new PredictionArrayCalculator();
     97      actionSelector = new ActionSelector();
     98      UniformSubScopesProcessor matchActionSubScopesProcessor = new UniformSubScopesProcessor();
     99      MatchActionOperator matchActionOperator = new MatchActionOperator();
     100      ConditionalSelector conditionMatchSelector = new ConditionalSelector();
     101      ConditionalSelector actionMatchSelector = new ConditionalSelector();
    100102      SubScopesProcessor coveringSubScopesProcessor = new SubScopesProcessor();
    101       SubScopesRemover subScopesRemover = new SubScopesRemover();
     103      SubScopesCounter matchsetCounter = new SubScopesCounter();
    102104      Comparator comparator = new Comparator();
    103       ConditionalBranch conditionalBranch = new ConditionalBranch();
     105      ConditionalBranch coveringConditionalBranch = new ConditionalBranch();
    104106      MergingReducer mergingReducer = new MergingReducer();
    105       SolutionsCreator coveringMechanism = new SolutionsCreator();
    106       SubScopesProcessor actionSelectionSubScopesProcessor = new SubScopesProcessor();
    107       MaxValueActionSelector maxValueActionSelection = new MaxValueActionSelector();
    108       GeneticAlgorithmMainLoop geneticAlgorithmMainLoop = new GeneticAlgorithmMainLoop();
    109 
    110       UniformSubScopesProcessor uniformSubScopeProcessor = new UniformSubScopesProcessor();
    111       UniformRandomizer uniformRandomizer = new UniformRandomizer();
     107      MergingReducer mergingReducerWithSuccessor = new MergingReducer();
     108      coveringMechanism = new SolutionsCreator();
     109      evaluator = new Placeholder();
     110      SubScopesProcessor actionSetSubScopesProcessor = new SubScopesProcessor();
     111      DataReducer actionSetSizeDataReducer = new DataReducer();
     112      UniformSubScopesProcessor accuracySubScopesProcessor = new UniformSubScopesProcessor();
     113      CalculateAccuracy calculateAccuracy = new CalculateAccuracy();
     114      SumAccuracy sumAccuracy = new SumAccuracy();
     115      UniformSubScopesProcessor updateParametersSubScopesProcessor = new UniformSubScopesProcessor();
     116      LCSAdaptedGeneticAlgorithm adaptedGeneticAlgorithmMainLoop = new LCSAdaptedGeneticAlgorithm();
     117
     118      classifierFetcher = new Placeholder();
     119      actionExecuter = new Placeholder();
    112120
    113121      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("ZeroIntValue", new IntValue(0)));
    114122      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("OneIntValue", new IntValue(1)));
     123      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Iteration", new IntValue(0)));
     124
     125      initialPopulationConditionalBranch.ConditionParameter.ActualName = "CreateInitialPopulation";
     126
     127      initialSolutionsCreator.NumberOfSolutionsParameter.ActualName = "N";
     128
     129      iterationCounter.ValueParameter.ActualName = "Iteration";
     130      iterationCounter.IncrementParameter.ActualName = "OneIntValue";
     131
     132      matchCondtionSubScopesProcessor.Operator = matchConditionOperator;
     133
     134      matchConditionOperator.MatchParameter.ActualName = "CombinedIntegerVector";
    115135
    116136      conditionMatchSelector.CopySelected = new BoolValue(false);
    117       conditionMatchSelector.MatchCondition = new BoolValue(true);
    118       //this has to be set differently
    119       conditionMatchSelector.MatchParameter.ActualName = "CombinedIntegerVector";
    120       conditionMatchSelector.TargetMatchParameter.ActualName = "TestTarget";
     137      conditionMatchSelector.ConditionParameter.ActualName = "MatchCondition";
     138
     139      matchsetCounter.Name = "Count number of rules in match set";
     140      matchsetCounter.AccumulateParameter.Value = new BoolValue(false);
     141      matchsetCounter.ValueParameter.ActualName = "MatchSetCount";
    121142
    122143      comparator.Comparison = new Comparison(ComparisonType.LessOrEqual);
    123       comparator.LeftSideParameter.ActualName = conditionMatchSelector.NumberOfSelectedSubScopesParameter.ActualName;
     144      comparator.LeftSideParameter.ActualName = matchsetCounter.ValueParameter.ActualName;
    124145      comparator.ResultParameter.ActualName = "Covering";
    125146      //more than zero solutions have to be selected
    126147      comparator.RightSideParameter.ActualName = "ZeroIntValue";
    127148
    128       conditionalBranch.ConditionParameter.ActualName = "Covering";
    129 
    130       subScopesRemover.SubScopeIndexParameter.ActualName = "OneIntValue";
    131       subScopesRemover.RemoveAllSubScopes = false;
     149      coveringConditionalBranch.Name = "Covering Branch";
     150      coveringConditionalBranch.ConditionParameter.ActualName = "Covering";
     151
     152      matchActionSubScopesProcessor.Operator = matchActionOperator;
     153
     154      matchActionOperator.MatchParameter.ActualName = "CombinedIntegerVector";
     155      matchActionOperator.TargetMatchParameter.ActualName = actionSelector.SelectedActionParameter.ActualName;
    132156
    133157      coveringMechanism.NumberOfSolutionsParameter.ActualName = "OneIntValue";
    134       coveringMechanism.SolutionCreatorParameter.ActualName = "SolutionCreator";
    135 
    136       maxValueActionSelection.ValueParameter.ActualName = "Fitness";
    137       maxValueActionSelection.MatchParameter.ActualName = "CombinedIntegerVector";
     158
     159      predictionArrayCalculator.MatchParameter.ActualName = "CombinedIntegerVector";
     160
     161      actionSelector.PredictionArrayParameter.ActualName = predictionArrayCalculator.PredictionArrayParameter.Name;
     162      actionSelector.RandomParameter.ActualName = "Random";
     163      actionSelector.ExplorationProbabilityParameter.ActualName = "ExplorationProbability";
    138164
    139165      actionMatchSelector.CopySelected = new BoolValue(false);
    140       actionMatchSelector.MatchCondition = new BoolValue(false);
    141       //this has to be set differently
    142       actionMatchSelector.MatchParameter.ActualName = "CombinedIntegerVector";
    143       actionMatchSelector.TargetMatchParameter.ActualName = maxValueActionSelection.SelectedActionParameter.ActualName;
     166      actionMatchSelector.ConditionParameter.ActualName = "MatchAction";
    144167
    145168      SelectorParameter.Value.CopySelected = new BoolValue(true);
    146169      SelectorParameter.Value.NumberOfSelectedSubScopesParameter.Value = new IntValue(200);
    147170
    148       geneticAlgorithmMainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
    149       geneticAlgorithmMainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
    150       geneticAlgorithmMainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
    151       geneticAlgorithmMainLoop.RandomParameter.ActualName = "Random";
    152       geneticAlgorithmMainLoop.ElitesParameter.ActualName = "OneIntValue";
    153       geneticAlgorithmMainLoop.MaximumGenerationsParameter.ActualName = "ZeroIntValue";
    154       geneticAlgorithmMainLoop.QualityParameter.ActualName = "Fitness";
     171      evaluator.Name = "Evaluator";
     172
     173      classifierFetcher.Name = "ClassifierFetcher";
     174
     175      actionExecuter.Name = "ActionExecuter";
     176
     177      actionSetSizeDataReducer.TargetParameter.ActualName = "CurrentActionSetSize";
     178      actionSetSizeDataReducer.ParameterToReduce.ActualName = "Numerosity";
     179      actionSetSizeDataReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum);
     180      actionSetSizeDataReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Assign);
     181
     182      calculateAccuracy.AlphaParameter.ActualName = "Alpha";
     183      calculateAccuracy.ErrorParameter.ActualName = "Error";
     184      calculateAccuracy.ErrorZeroParameter.ActualName = "ErrorZero";
     185      calculateAccuracy.PowerParameter.ActualName = "v";
     186
     187      sumAccuracy.AccuracyParameter.ActualName = calculateAccuracy.AccuracyParameter.ActualName;
     188      sumAccuracy.NumerosityParameter.ActualName = "Numerosity";
     189
     190      adaptedGeneticAlgorithmMainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
     191      adaptedGeneticAlgorithmMainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
     192      adaptedGeneticAlgorithmMainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
     193      adaptedGeneticAlgorithmMainLoop.RandomParameter.ActualName = "Random";
     194      adaptedGeneticAlgorithmMainLoop.MaximumGenerationsParameter.ActualName = "ZeroIntValue";
     195      adaptedGeneticAlgorithmMainLoop.QualityParameter.ActualName = "Fitness";
    155196      //needed?
    156       geneticAlgorithmMainLoop.MutationProbabilityParameter.Value = new PercentValue(10);
    157       geneticAlgorithmMainLoop.MaximizationParameter.Value = new BoolValue(true);
    158 
    159       uniformSubScopeProcessor.Parallel = new BoolValue(true);
    160 
    161       uniformRandomizer.RandomParameter.ActualName = "Random";
    162       uniformRandomizer.MinParameter.Value = new DoubleValue(0);
    163       uniformRandomizer.MaxParameter.Value = new DoubleValue(100);
    164       uniformRandomizer.ValueParameter.ActualName = "Fitness";
    165 
    166       //ParameterizeSelectors();
     197      adaptedGeneticAlgorithmMainLoop.MutationProbabilityParameter.Value = new PercentValue(10);
     198      adaptedGeneticAlgorithmMainLoop.MaximizationParameter.Value = new BoolValue(true);
    167199      #endregion
    168200
    169201      #region Create operator graph
    170202      OperatorGraph.InitialOperator = variableCreator;
    171       variableCreator.Successor = conditionMatchSelector;
    172       //variableCreator.Successor = geneticAlgorithmMainLoop;
    173       //geneticAlgorithmMainLoop.Successor = conditionMatchSelector;
    174       conditionMatchSelector.Successor = comparator;
    175       comparator.Successor = conditionalBranch;
    176       conditionalBranch.TrueBranch = coveringSubScopesProcessor;
    177       conditionalBranch.FalseBranch = actionSelectionSubScopesProcessor;
    178       conditionalBranch.Successor = subScopesRemover;
    179       coveringMechanism.Successor = uniformSubScopeProcessor;
    180       uniformSubScopeProcessor.Operator = uniformRandomizer;
     203
     204      variableCreator.Successor = initialPopulationConditionalBranch;
     205      initialPopulationConditionalBranch.TrueBranch = initialSolutionsCreator;
     206      initialPopulationConditionalBranch.FalseBranch = new EmptyOperator();
     207      initialPopulationConditionalBranch.Successor = classifierFetcher;
     208      classifierFetcher.Successor = matchCondtionSubScopesProcessor;
     209      matchCondtionSubScopesProcessor.Successor = conditionMatchSelector;
     210      //variableCreator.Successor = adaptedGeneticAlgorithmMainLoop;
     211      //adaptedGeneticAlgorithmMainLoop.Successor = conditionMatchSelector;
     212
     213      conditionMatchSelector.Successor = coveringSubScopesProcessor;
    181214      coveringSubScopesProcessor.Operators.Add(new EmptyOperator());
    182       coveringSubScopesProcessor.Operators.Add(coveringMechanism);
    183       coveringSubScopesProcessor.Successor = actionSelectionSubScopesProcessor;
    184       actionSelectionSubScopesProcessor.Operators.Add(new EmptyOperator());
    185       actionSelectionSubScopesProcessor.Operators.Add(maxValueActionSelection);
    186       maxValueActionSelection.Successor = actionMatchSelector;
    187       subScopesRemover.Successor = mergingReducer;
    188       mergingReducer.Successor = conditionMatchSelector;
    189       //mergingReducer.Successor = geneticAlgorithmMainLoop;
     215      coveringSubScopesProcessor.Operators.Add(matchsetCounter);
     216      coveringSubScopesProcessor.Successor = mergingReducerWithSuccessor;
     217      matchsetCounter.Successor = comparator;
     218      comparator.Successor = coveringConditionalBranch;
     219      coveringConditionalBranch.TrueBranch = coveringMechanism;
     220      coveringConditionalBranch.FalseBranch = new EmptyOperator();
     221      coveringConditionalBranch.Successor = predictionArrayCalculator;
     222      predictionArrayCalculator.Successor = actionSelector;
     223      actionSelector.Successor = matchActionSubScopesProcessor;
     224      matchActionSubScopesProcessor.Successor = actionMatchSelector;
     225      actionMatchSelector.Successor = actionExecuter;
     226      actionExecuter.Successor = actionSetSubScopesProcessor;
     227      actionSetSubScopesProcessor.Operators.Add(new EmptyOperator());
     228      actionSetSubScopesProcessor.Operators.Add(actionSetSizeDataReducer);
     229      actionSetSizeDataReducer.Successor = accuracySubScopesProcessor;
     230      accuracySubScopesProcessor.Operator = calculateAccuracy;
     231      accuracySubScopesProcessor.Successor = sumAccuracy;
     232      sumAccuracy.Successor = updateParametersSubScopesProcessor;
     233      updateParametersSubScopesProcessor.Operator = evaluator;
     234
     235      actionSetSubScopesProcessor.Successor = mergingReducer;
     236
     237      mergingReducerWithSuccessor.Successor = iterationCounter;
     238      iterationCounter.Successor = classifierFetcher;
     239      //mergingReducer.Successor = adaptedGeneticAlgorithmMainLoop;
    190240      #endregion
    191241    }
     
    197247        stochasticOp.RandomParameter.Hidden = true;
    198248      }
     249    }
     250
     251    internal void SetCurrentProblem(IConditionActionProblem problem) {
     252      initialSolutionsCreator.SolutionCreatorParameter.ActualName = problem.SolutionCreatorParameter.Name;
     253      initialSolutionsCreator.EvaluatorParameter.ActualName = problem.EvaluatorParameter.Name;
     254
     255      coveringMechanism.SolutionCreatorParameter.ActualName = problem.SolutionCreatorParameter.Name;
     256      coveringMechanism.EvaluatorParameter.ActualName = problem.EvaluatorParameter.Name;
     257
     258      problem.ActionExecuter.SelectedActionParameter.ActualName = actionSelector.SelectedActionParameter.ActualName;
     259
     260      problem.ClassifierFetcher.IterationParameter.ActualName = "Iteration";
     261
     262      evaluator.OperatorParameter.ActualName = problem.EvaluatorParameter.Name;
     263
     264      classifierFetcher.OperatorParameter.ActualName = problem.ClassifierFetcherParameter.Name;
     265
     266      actionExecuter.OperatorParameter.ActualName = problem.ActionExecuterParameter.Name;
     267
     268      matchConditionOperator.TargetMatchParameter.ActualName = problem.ClassifierFetcher.CurrentClassifierToMatchParameter.Name;
     269
     270      predictionArrayCalculator.PredictionParameter.ActualName = problem.Evaluator.PredictionParameter.ActualName;
     271      predictionArrayCalculator.FitnessParameter.ActualName = problem.Evaluator.FitnessParameter.ActualName;
    199272    }
    200273    //private void ParameterizeSelectors() {
  • branches/LearningClassifierSystems/HeuristicLab.Algorithms.LearningClassifierSystems/3.3/Properties

    • Property svn:ignore set to
      AssemblyInfo.cs
Note: See TracChangeset for help on using the changeset viewer.