- Timestamp:
- 11/29/12 10:59:55 (12 years ago)
- Location:
- trunk/sources
- Files:
-
- 23 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/Interfaces/ISymbolicClassificationModel.cs
r8594 r8972 27 27 void RecalculateModelParameters(IClassificationProblemData problemData, IEnumerable<int> rows); 28 28 new ISymbolicClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData); 29 30 void Scale(IClassificationProblemData problemData); 29 31 } 30 32 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer.cs
r8883 r8972 82 82 protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) { 83 83 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 84 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);84 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 85 85 86 86 model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectiveValidationBestSolutionAnalyzer.cs
r8883 r8972 72 72 protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQualities) { 73 73 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 74 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);74 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 75 75 76 76 model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectivePenaltyScoreEvaluator.cs
r8883 r8972 92 92 93 93 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(tree, SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 94 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, problemData, problemData.TargetVariable);94 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(problemData); 95 95 model.RecalculateModelParameters(problemData, rows); 96 96 double penalty = Calculate(model, problemData, rows); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer.cs
r8883 r8972 82 82 protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 83 83 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 84 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);84 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 85 85 86 86 model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer.cs
r8883 r8972 65 65 protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree) { 66 66 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 67 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);67 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 68 68 69 69 model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer.cs
r8883 r8972 72 72 protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 73 73 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 74 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);74 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 75 75 76 76 model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer.cs
r8883 r8972 65 65 protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree) { 66 66 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 67 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);67 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 68 68 69 69 model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicClassificationModel.cs
r8664 r8972 62 62 return CreateClassificationSolution(problemData); 63 63 } 64 65 public void Scale(IClassificationProblemData problemData) { 66 Scale(problemData, problemData.TargetVariable); 67 } 64 68 } 65 69 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views/3.4/InteractiveSymbolicRegressionSolutionSimplifierView.cs
r8946 r8972 44 44 protected override void UpdateModel(ISymbolicExpressionTree tree) { 45 45 var model = new SymbolicRegressionModel(tree, Content.Model.Interpreter, Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit); 46 SymbolicRegressionModel.Scale(model, Content.ProblemData, Content.ProblemData.TargetVariable);46 model.Scale(Content.ProblemData); 47 47 Content.Model = model; 48 48 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/Interfaces/ISymbolicRegressionModel.cs
r8584 r8972 24 24 double LowerEstimationLimit { get; } 25 25 double UpperEstimationLimit { get; } 26 27 void Scale(IRegressionProblemData problemData); 26 28 } 27 29 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer.cs
r8664 r8972 65 65 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) { 66 66 var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 67 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);67 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 68 68 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); 69 69 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer.cs
r8664 r8972 55 55 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) { 56 56 var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 57 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);57 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 58 58 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); 59 59 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveTrainingBestSolutionAnalyzer.cs
r8664 r8972 64 64 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 65 65 var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 66 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);66 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 67 67 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); 68 68 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer.cs
r8664 r8972 43 43 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree) { 44 44 var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 45 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);45 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 46 46 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); 47 47 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveValidationBestSolutionAnalyzer.cs
r8664 r8972 56 56 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 57 57 var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 58 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);58 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 59 59 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); 60 60 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer.cs
r8664 r8972 43 43 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree) { 44 44 var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 45 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);45 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 46 46 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); 47 47 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SymbolicRegressionModel.cs
r8664 r8972 69 69 return CreateRegressionSolution(problemData); 70 70 } 71 72 public void Scale(IRegressionProblemData problemData) { 73 Scale(problemData, problemData.TargetVariable); 74 } 71 75 } 72 76 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis.Views/3.4/InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView.cs
r8798 r8972 51 51 protected override void UpdateModel(ISymbolicExpressionTree tree) { 52 52 var model = new SymbolicTimeSeriesPrognosisModel(tree, Content.Model.Interpreter); 53 SymbolicTimeSeriesPrognosisModel.Scale(model, Content.ProblemData, Content.ProblemData.TargetVariable);53 model.Scale(Content.ProblemData); 54 54 Content.Model = model; 55 55 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SingleObjective/SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator.cs
r8798 r8972 73 73 } else if (applyLinearScaling) { //first create model to perform linear scaling and afterwards calculate fitness for the scaled model 74 74 var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicExpressionTree)solution.Clone(), interpreter, lowerEstimationLimit, upperEstimationLimit); 75 SymbolicTimeSeriesPrognosisModel.Scale(model, problemData, problemData.TargetVariable);75 model.Scale(problemData); 76 76 var scaledSolution = model.SymbolicExpressionTree; 77 77 estimatedValues = interpreter.GetSymbolicExpressionTreeValues(scaledSolution, problemData.Dataset, rows, horizions).SelectMany(x => x); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SingleObjective/SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer.cs
r8798 r8972 65 65 protected override ISymbolicTimeSeriesPrognosisSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 66 66 var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue as ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 67 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicTimeSeriesPrognosisModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);67 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 68 68 return new SymbolicTimeSeriesPrognosisSolution(model, (ITimeSeriesPrognosisProblemData)ProblemDataParameter.ActualValue.Clone()); 69 69 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SingleObjective/SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer.cs
r8798 r8972 53 53 protected override ISymbolicTimeSeriesPrognosisSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 54 54 var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue as ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 55 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicTimeSeriesPrognosisModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);55 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 56 56 57 57 return new SymbolicTimeSeriesPrognosisSolution(model, (ITimeSeriesPrognosisProblemData)ProblemDataParameter.ActualValue.Clone()); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisModel.cs
r8664 r8972 69 69 70 70 #region Scaling 71 p ublic static void Scale(ISymbolicDataAnalysisModel model,IDataAnalysisProblemData problemData, string targetVariable) {71 protected void Scale(IDataAnalysisProblemData problemData, string targetVariable) { 72 72 var dataset = problemData.Dataset; 73 73 var rows = problemData.TrainingIndices; 74 var estimatedValues = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset, rows);74 var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows); 75 75 var targetValues = dataset.GetDoubleValues(targetVariable, rows); 76 76 … … 94 94 ConstantTreeNode betaTreeNode = null; 95 95 // check if model has been scaled previously by analyzing the structure of the tree 96 var startNode = model.SymbolicExpressionTree.Root.GetSubtree(0);96 var startNode = SymbolicExpressionTree.Root.GetSubtree(0); 97 97 if (startNode.GetSubtree(0).Symbol is Addition) { 98 98 var addNode = startNode.GetSubtree(0);
Note: See TracChangeset
for help on using the changeset viewer.