- Timestamp:
- 11/16/12 20:59:55 (12 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ThresholdCalculators/NormalDistributionCutPointsThresholdCalculator.cs
r8913 r8917 95 95 96 96 // add small value and large value for the calculation of most influential class in each thresholded section 97 thresholdList.Insert(0, estimatedValues.Min() - 1);98 thresholdList.Add( estimatedValues.Max() + 1);97 thresholdList.Insert(0, double.NegativeInfinity); 98 thresholdList.Add(double.PositiveInfinity); 99 99 100 100 // determine class values for each partition separated by a threshold by calculating the density of all class distributions 101 101 // all points in the partition are classified as the class with the maximal density in the parition 102 List<double> classValuesList = new List<double>();103 102 if (thresholdList.Count == 2) { 104 103 // this happens if there are no thresholds (distributions for all classes are exactly the same) 105 104 // -> all samples should be classified as the class with the most observations 106 105 // group observations by target class and select the class with largest count 107 classValuesList.Add(targetClassValues.GroupBy(c => c) 108 .OrderBy(g => g.Count()) 109 .Last().Key); 106 double mostFrequentClass = targetClassValues.GroupBy(c => c) 107 .OrderBy(g => g.Count()) 108 .Last().Key; 109 thresholds = new double[] { double.NegativeInfinity }; 110 classValues = new double[] { mostFrequentClass }; 110 111 } else { 112 111 113 // at least one reasonable threshold ... 112 114 // find the most likely class for the points between thresholds m 115 List<double> filteredThresholds = new List<double>(); 116 List<double> filteredClassValues = new List<double>(); 113 117 for (int i = 0; i < thresholdList.Count - 1; i++) { 114 115 118 // determine class with maximal density mass between the thresholds 116 119 double maxDensity = DensityMass(thresholdList[i], thresholdList[i + 1], classMean[originalClasses[0]], classStdDev[originalClasses[0]]); … … 123 126 } 124 127 } 125 classValuesList.Add(maxDensityClassValue); 126 } 127 } 128 129 // only keep thresholds at which the class changes 130 // class B overrides threshold s. So only thresholds r and t are relevant and have to be kept 131 // 132 // A B C 133 // /\ /\/\ 134 // / r\/ /\t\ 135 // / /\/ \ \ 136 // / / /\s \ \ 137 // -/---/-/ -\---\-\---- 138 139 List<double> filteredThresholds = new List<double>(); 140 List<double> filteredClassValues = new List<double>(); 141 filteredThresholds.Add(double.NegativeInfinity); // the smallest possible threshold for the first class 142 filteredClassValues.Add(classValuesList[0]); 143 // do not include the last threshold which was just needed for the previous step 144 for (int i = 0; i < classValuesList.Count - 1; i++) { 145 if (!classValuesList[i].IsAlmost(classValuesList[i + 1])) { 146 filteredThresholds.Add(thresholdList[i + 1]); 147 filteredClassValues.Add(classValuesList[i + 1]); 148 } 149 } 150 thresholds = filteredThresholds.ToArray(); 151 classValues = filteredClassValues.ToArray(); 152 } 153 154 private static double NormalCDF(double mu, double sigma, double x) { 155 return 0.5 * (1 + alglib.normaldistr.errorfunction((x - mu) / (sigma * Math.Sqrt(2.0)))); 128 if (maxDensity > double.NegativeInfinity && 129 (filteredClassValues.Count == 0 || !maxDensityClassValue.IsAlmost(filteredClassValues.Last()))) { 130 filteredThresholds.Add(thresholdList[i]); 131 filteredClassValues.Add(maxDensityClassValue); 132 } 133 } 134 thresholds = filteredThresholds.ToArray(); 135 classValues = filteredClassValues.ToArray(); 136 } 137 } 138 139 private static double sqr2 = Math.Sqrt(2.0); 140 // returns the density function of the standard normal distribution at x 141 private static double NormalCDF(double x) { 142 return 0.5 * (1 + alglib.errorfunction(x / sqr2)); 143 } 144 145 // approximation of the log of the normal cummulative distribution from the lightspeed toolbox by Tom Minka 146 // http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/ 147 private static double[] c = new double[] { -1, 5 / 2.0, -37 / 3.0, 353 / 4.0, -4081 / 5.0, 55205 / 6.0, -854197 / 7.0 }; 148 private static double LogNormalCDF(double x) { 149 if (x >= -6.5) 150 // calculate the log directly if x is large enough 151 return Math.Log(NormalCDF(x)); 152 else { 153 double z = Math.Pow(x, -2); 154 // asymptotic series for logcdf 155 double y = z * (c[0] + z * (c[1] + z * (c[2] + z * (c[3] + z * (c[4] + z * (c[5] + z * c[6])))))); 156 return y - 0.5 * Math.Log(2 * Math.PI) - 0.5 * x * x - Math.Log(-x); 157 } 156 158 } 157 159 … … 160 162 private static double DensityMass(double lower, double upper, double mu, double sigma) { 161 163 if (sigma.IsAlmost(0.0)) { 162 if (lower < mu && mu < upper) return 1.0; // all mass is between lower and upper 163 else return 0; // no mass is between lower and upper 164 } 165 166 if (double.IsNegativeInfinity(lower)) return NormalCDF(mu, sigma, upper); 167 else return NormalCDF(mu, sigma, upper) - NormalCDF(mu, sigma, lower); 164 if (lower < mu && mu < upper) return 0.0; // all mass is between lower and upper 165 else return double.NegativeInfinity; // no mass is between lower and upper 166 } 167 168 if (lower > mu) { 169 return DensityMass(-upper, -lower, -mu, sigma); 170 } 171 172 upper = (upper - mu) / sigma; 173 lower = (lower - mu) / sigma; 174 if (double.IsNegativeInfinity(lower)) return LogNormalCDF(upper); 175 176 return LogNormalCDF(upper) + Math.Log(1 - Math.Exp(LogNormalCDF(lower) - LogNormalCDF(upper))); 168 177 } 169 178 … … 197 206 // general case 198 207 // calculate the solutions x1, x2 where N(m1,s1) == N(m2,s2) 199 double a = (s1 + s2) * (s1 - s2); 200 double g = Math.Sqrt(s1 * s1 * s2 * s2 * ((m1 - m2) * (m1 - m2) + 2.0 * (s1 * s1 + s2 * s2) * Math.Log(s2 / s1))); 201 double m1s2 = m1 * s2 * s2; 202 double m2s1 = m2 * s1 * s1; 203 x1 = (m2s1 - m1s2 - g) / a; 204 x2 = (m2s1 - m1s2 + g) / a; 208 double g = Math.Sqrt(2 * s2 * s2 * Math.Log(s2 / s1) - 2 * s1 * s1 * Math.Log(s2 / s1) - 2 * m1 * m2 + m1 * m1 + m2 * m2); 209 double s = (s1 * s1 - s2 * s2); 210 x1 = (m2 * s1 * s1 - m1 * s2 * s2 + s1 * s2 * g) / s; 211 x2 = -(m1 * s2 * s2 - m2 * s1 * s1 + s1 * s2 * g) / s; 205 212 } 206 213 }
Note: See TracChangeset
for help on using the changeset viewer.