Changeset 8915 for branches/HeuristicLab.TreeSimplifier/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective
- Timestamp:
- 11/15/12 16:47:25 (12 years ago)
- Location:
- branches/HeuristicLab.TreeSimplifier/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective
- Files:
-
- 8 edited
- 1 copied
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.TreeSimplifier/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator.cs
r7259 r8915 47 47 IEnumerable<int> rows = GenerateRowsToEvaluate(); 48 48 var solution = SymbolicExpressionTreeParameter.ActualValue; 49 double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows );49 double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value); 50 50 QualityParameter.ActualValue = new DoubleValue(quality); 51 51 return base.Apply(); 52 52 } 53 53 54 public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows ) {54 public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) { 55 55 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 56 IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);57 IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);56 IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 57 OnlineCalculatorError errorState; 58 58 59 double minClassValue = problemData.ClassValues.OrderBy(x => x).First();60 double maxClassValue = problemData.ClassValues.OrderBy(x => x).Last();59 double lowestClassValue = problemData.ClassValues.OrderBy(x => x).First(); 60 double upmostClassValue = problemData.ClassValues.OrderByDescending(x => x).First(); 61 61 62 IEnumerator<double> originalEnumerator = originalValues.GetEnumerator(); 63 IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator(); 64 double errorSum = 0.0; 65 int n = 0; 66 67 // always move forward both enumerators (do not use short-circuit evaluation!) 68 while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { 69 double estimated = estimatedEnumerator.Current; 70 double original = originalEnumerator.Current; 71 double error = estimated - original; 72 73 if (estimated < minClassValue || estimated > maxClassValue) 74 errorSum += Math.Abs(error); 75 else 76 errorSum += Math.Pow(error, 2); 77 n++; 62 double boundedMse; 63 if (applyLinearScaling) { 64 var boundedMseCalculator = new OnlineBoundedMeanSquaredErrorCalculator(lowestClassValue, upmostClassValue); 65 CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, boundedMseCalculator, problemData.Dataset.Rows); 66 errorState = boundedMseCalculator.ErrorState; 67 boundedMse = boundedMseCalculator.BoundedMeanSquaredError; 68 } else { 69 IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 70 boundedMse = OnlineBoundedMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, lowestClassValue, upmostClassValue, out errorState); 78 71 } 79 80 // check if both enumerators are at the end to make sure both enumerations have the same length 81 if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) { 82 throw new ArgumentException("Number of elements in first and second enumeration doesn't match."); 83 } else { 84 return errorSum / n; 85 } 72 if (errorState != OnlineCalculatorError.None) return Double.NaN; 73 return boundedMse; 86 74 } 87 75 … … 89 77 SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context; 90 78 EstimationLimitsParameter.ExecutionContext = context; 79 ApplyLinearScalingParameter.ExecutionContext = context; 91 80 92 double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows );81 double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value); 93 82 94 83 SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null; 95 84 EstimationLimitsParameter.ExecutionContext = null; 85 ApplyLinearScalingParameter.ExecutionContext = null; 96 86 97 87 return mse; -
branches/HeuristicLab.TreeSimplifier/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator.cs
r7259 r8915 20 20 #endregion 21 21 22 using System; 22 23 using System.Collections.Generic; 23 24 using HeuristicLab.Common; … … 47 48 IEnumerable<int> rows = GenerateRowsToEvaluate(); 48 49 var solution = SymbolicExpressionTreeParameter.ActualValue; 49 double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows );50 double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value); 50 51 QualityParameter.ActualValue = new DoubleValue(quality); 51 52 return base.Apply(); 52 53 } 53 54 54 public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows ) {55 public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) { 55 56 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 56 IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 57 IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 57 IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 58 58 OnlineCalculatorError errorState; 59 double mse = OnlineMeanSquaredErrorCalculator.Calculate(originalValues, boundedEstimationValues, out errorState); 60 if (errorState != OnlineCalculatorError.None) return double.NaN; 61 else return mse; 59 60 double mse; 61 if (applyLinearScaling) { 62 var mseCalculator = new OnlineMeanSquaredErrorCalculator(); 63 CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, mseCalculator, problemData.Dataset.Rows); 64 errorState = mseCalculator.ErrorState; 65 mse = mseCalculator.MeanSquaredError; 66 } else { 67 IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 68 mse = OnlineMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState); 69 } 70 if (errorState != OnlineCalculatorError.None) return Double.NaN; 71 return mse; 62 72 } 63 73 … … 65 75 SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context; 66 76 EstimationLimitsParameter.ExecutionContext = context; 77 ApplyLinearScalingParameter.ExecutionContext = context; 67 78 68 double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows );79 double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value); 69 80 70 81 SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null; 71 82 EstimationLimitsParameter.ExecutionContext = null; 83 ApplyLinearScalingParameter.ExecutionContext = null; 72 84 73 85 return mse; -
branches/HeuristicLab.TreeSimplifier/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator.cs
r7259 r8915 47 47 IEnumerable<int> rows = GenerateRowsToEvaluate(); 48 48 var solution = SymbolicExpressionTreeParameter.ActualValue; 49 double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows );49 double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value); 50 50 QualityParameter.ActualValue = new DoubleValue(quality); 51 51 return base.Apply(); 52 52 } 53 53 54 public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows ) {54 public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) { 55 55 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 56 IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);56 IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 57 57 OnlineCalculatorError errorState; 58 double r2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState); 59 if (errorState != OnlineCalculatorError.None) return 0.0; 60 else return r2; 58 59 double r2; 60 if (applyLinearScaling) { 61 var r2Calculator = new OnlinePearsonsRSquaredCalculator(); 62 CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, r2Calculator, problemData.Dataset.Rows); 63 errorState = r2Calculator.ErrorState; 64 r2 = r2Calculator.RSquared; 65 } else { 66 IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 67 r2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState); 68 } 69 if (errorState != OnlineCalculatorError.None) return double.NaN; 70 return r2; 61 71 } 62 72 … … 64 74 SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context; 65 75 EstimationLimitsParameter.ExecutionContext = context; 76 ApplyLinearScalingParameter.ExecutionContext = context; 66 77 67 double r2 = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows );78 double r2 = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value); 68 79 69 80 SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null; 70 81 EstimationLimitsParameter.ExecutionContext = null; 82 ApplyLinearScalingParameter.ExecutionContext = null; 71 83 72 84 return r2; -
branches/HeuristicLab.TreeSimplifier/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveProblem.cs
r8175 r8915 35 35 private const string EstimationLimitsParameterName = "EstimationLimits"; 36 36 private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic classification model."; 37 private const string ModelCreatorParameterName = "ModelCreator"; 37 38 38 39 #region parameter properties … … 40 41 get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; } 41 42 } 43 public IValueParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter { 44 get { return (IValueParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; } 45 } 42 46 #endregion 43 47 #region properties 44 48 public DoubleLimit EstimationLimits { 45 49 get { return EstimationLimitsParameter.Value; } 50 } 51 public ISymbolicClassificationModelCreator ModelCreator { 52 get { return ModelCreatorParameter.Value; } 46 53 } 47 54 #endregion … … 57 64 : base(new ClassificationProblemData(), new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) { 58 65 Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription)); 66 Parameters.Add(new ValueParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "", new AccuracyMaximizingThresholdsModelCreator())); 59 67 68 ApplyLinearScalingParameter.Value.Value = false; 60 69 EstimationLimitsParameter.Hidden = true; 61 70 … … 71 80 [StorableHook(HookType.AfterDeserialization)] 72 81 private void AfterDeserialization() { 73 RegisterEventHandlers(); 74 // compatibility 82 // BackwardsCompatibility3.4 83 #region Backwards compatible code, remove with 3.5 84 if (!Parameters.ContainsKey(ModelCreatorParameterName)) 85 Parameters.Add(new ValueParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "", new AccuracyMaximizingThresholdsModelCreator())); 86 75 87 bool changed = false; 76 88 if (!Operators.OfType<SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer>().Any()) { … … 83 95 } 84 96 if (changed) ParameterizeOperators(); 97 #endregion 98 RegisterEventHandlers(); 85 99 } 86 100 87 101 private void RegisterEventHandlers() { 88 102 SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols(); 103 ModelCreatorParameter.NameChanged += (o, e) => ParameterizeOperators(); 89 104 } 90 105 … … 125 140 if (Parameters.ContainsKey(EstimationLimitsParameterName)) { 126 141 var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators); 127 foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {142 foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) 128 143 op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name; 129 } 144 foreach (var op in operators.OfType<ISymbolicClassificationModelCreatorOperator>()) 145 op.ModelCreatorParameter.ActualName = ModelCreatorParameter.Name; 130 146 } 131 147 } -
branches/HeuristicLab.TreeSimplifier/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer.cs
r7259 r8915 22 22 using HeuristicLab.Common; 23 23 using HeuristicLab.Core; 24 using HeuristicLab.Data;25 24 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 26 25 using HeuristicLab.Parameters; … … 34 33 [StorableClass] 35 34 public sealed class SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer<ISymbolicClassificationSolution>, 36 ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator {35 ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator, ISymbolicClassificationModelCreatorOperator { 37 36 private const string ProblemDataParameterName = "ProblemData"; 37 private const string ModelCreatorParameterName = "ModelCreator"; 38 38 private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter"; 39 39 private const string EstimationLimitsParameterName = "UpperEstimationLimit"; 40 private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";41 40 #region parameter properties 42 41 public ILookupParameter<IClassificationProblemData> ProblemDataParameter { 43 42 get { return (ILookupParameter<IClassificationProblemData>)Parameters[ProblemDataParameterName]; } 43 } 44 public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter { 45 get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; } 46 } 47 ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter { 48 get { return ModelCreatorParameter; } 44 49 } 45 50 public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter { … … 49 54 get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; } 50 55 } 51 public IValueParameter<BoolValue> ApplyLinearScalingParameter {52 get { return (IValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }53 }54 56 #endregion 55 #region properties 56 public BoolValue ApplyLinearScaling { 57 get { return ApplyLinearScalingParameter.Value; } 58 } 59 #endregion 57 60 58 61 59 [StorableConstructor] … … 65 63 : base() { 66 64 Parameters.Add(new LookupParameter<IClassificationProblemData>(ProblemDataParameterName, "The problem data for the symbolic classification solution.")); 65 Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "")); 67 66 Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree.")); 68 67 Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic classification model.")); 69 Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic classification solution should be linearly scaled.", new BoolValue(false)));70 68 } 69 71 70 public override IDeepCloneable Clone(Cloner cloner) { 72 71 return new SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer(this, cloner); 73 72 } 73 [StorableHook(HookType.AfterDeserialization)] 74 private void AfterDeserialization() { 75 // BackwardsCompatibility3.4 76 #region Backwards compatible code, remove with 3.5 77 if (!Parameters.ContainsKey(ModelCreatorParameterName)) 78 Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "")); 79 #endregion 80 } 74 81 75 82 protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 76 var model = new SymbolicDiscriminantFunctionClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);77 if (ApplyLinearScaling .Value) {78 SymbolicDiscriminantFunctionClassificationModel.Scale(model, ProblemDataParameter.ActualValue); 79 }80 return new SymbolicDiscriminantFunctionClassificationSolution(model,(IClassificationProblemData)ProblemDataParameter.ActualValue.Clone());83 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 84 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable); 85 86 model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices); 87 return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone()); 81 88 } 82 89 } -
branches/HeuristicLab.TreeSimplifier/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer.cs
r8169 r8915 22 22 using HeuristicLab.Common; 23 23 using HeuristicLab.Core; 24 using HeuristicLab.Data;25 24 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 26 25 using HeuristicLab.Parameters; … … 33 32 [Item("SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer", "An operator that collects the training Pareto-best symbolic classification solutions for single objective symbolic classification problems.")] 34 33 [StorableClass] 35 public sealed class SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer<IClassificationProblemData, ISymbolicClassificationSolution> {36 private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";34 public sealed class SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer<IClassificationProblemData, ISymbolicClassificationSolution>, ISymbolicClassificationModelCreatorOperator { 35 private const string ModelCreatorParameterName = "ModelCreator"; 37 36 #region parameter properties 38 public IValue Parameter<BoolValue> ApplyLinearScalingParameter {39 get { return (IValue Parameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }37 public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter { 38 get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; } 40 39 } 41 #endregion 42 43 #region properties 44 public BoolValue ApplyLinearScaling { 45 get { return ApplyLinearScalingParameter.Value; } 40 ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter { 41 get { return ModelCreatorParameter; } 46 42 } 47 43 #endregion … … 52 48 public SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer() 53 49 : base() { 54 Parameters.Add(new Value Parameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic classification solution should be linearly scaled.", new BoolValue(false)));50 Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "")); 55 51 } 56 52 public override IDeepCloneable Clone(Cloner cloner) { … … 58 54 } 59 55 56 [StorableHook(HookType.AfterDeserialization)] 57 private void AfterDeserialization() { 58 // BackwardsCompatibility3.4 59 #region Backwards compatible code, remove with 3.5 60 if (!Parameters.ContainsKey(ModelCreatorParameterName)) 61 Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "")); 62 #endregion 63 } 64 60 65 protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree) { 61 var model = new SymbolicDiscriminantFunctionClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 62 if (ApplyLinearScaling.Value) 63 SymbolicDiscriminantFunctionClassificationModel.Scale(model, ProblemDataParameter.ActualValue); 64 return new SymbolicDiscriminantFunctionClassificationSolution(model, (IClassificationProblemData)ProblemDataParameter.ActualValue.Clone()); 66 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 67 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable); 68 69 model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices); 70 return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone()); 65 71 } 66 72 } -
branches/HeuristicLab.TreeSimplifier/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer.cs
r7259 r8915 22 22 using HeuristicLab.Common; 23 23 using HeuristicLab.Core; 24 using HeuristicLab.Data;25 24 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 26 25 using HeuristicLab.Parameters; … … 34 33 [StorableClass] 35 34 public sealed class SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveValidationBestSolutionAnalyzer<ISymbolicClassificationSolution, ISymbolicClassificationSingleObjectiveEvaluator, IClassificationProblemData>, 36 ISymbolicDataAnalysisBoundedOperator {35 ISymbolicDataAnalysisBoundedOperator, ISymbolicClassificationModelCreatorOperator { 37 36 private const string EstimationLimitsParameterName = "EstimationLimits"; 38 private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";37 private const string ModelCreatorParameterName = "ModelCreator"; 39 38 40 39 #region parameter properties … … 42 41 get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; } 43 42 } 44 public IValueParameter<BoolValue> ApplyLinearScalingParameter { 45 get { return (IValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; } 43 public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter { 44 get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; } 45 } 46 ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter { 47 get { return ModelCreatorParameter; } 46 48 } 47 49 #endregion 48 50 49 #region properties50 public BoolValue ApplyLinearScaling {51 get { return ApplyLinearScalingParameter.Value; }52 }53 #endregion54 51 [StorableConstructor] 55 52 private SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer(bool deserializing) : base(deserializing) { } … … 58 55 : base() { 59 56 Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic classification model.")); 60 Parameters.Add(new Value Parameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic classification solution should be linearly scaled.", new BoolValue(false)));57 Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "")); 61 58 } 62 59 public override IDeepCloneable Clone(Cloner cloner) { … … 64 61 } 65 62 63 [StorableHook(HookType.AfterDeserialization)] 64 private void AfterDeserialization() { 65 // BackwardsCompatibility3.4 66 #region Backwards compatible code, remove with 3.5 67 if (!Parameters.ContainsKey(ModelCreatorParameterName)) 68 Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "")); 69 #endregion 70 } 71 66 72 protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 67 var model = new SymbolicDiscriminantFunctionClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);68 if (ApplyLinearScaling .Value) {69 SymbolicDiscriminantFunctionClassificationModel.Scale(model, ProblemDataParameter.ActualValue); 70 }71 return new SymbolicDiscriminantFunctionClassificationSolution(model,(IClassificationProblemData)ProblemDataParameter.ActualValue.Clone());73 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 74 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable); 75 76 model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices); 77 return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone()); 72 78 } 73 79 } -
branches/HeuristicLab.TreeSimplifier/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer.cs
r8169 r8915 22 22 using HeuristicLab.Common; 23 23 using HeuristicLab.Core; 24 using HeuristicLab.Data;25 24 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 26 25 using HeuristicLab.Parameters; … … 33 32 [Item("SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer", "An operator that collects the validation Pareto-best symbolic classification solutions for single objective symbolic classification problems.")] 34 33 [StorableClass] 35 public sealed class SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveValidationParetoBestSolutionAnalyzer<ISymbolicClassificationSolution, ISymbolicClassificationSingleObjectiveEvaluator, IClassificationProblemData> {36 private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";34 public sealed class SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveValidationParetoBestSolutionAnalyzer<ISymbolicClassificationSolution, ISymbolicClassificationSingleObjectiveEvaluator, IClassificationProblemData>, ISymbolicClassificationModelCreatorOperator { 35 private const string ModelCreatorParameterName = "ModelCreator"; 37 36 #region parameter properties 38 public IValue Parameter<BoolValue> ApplyLinearScalingParameter {39 get { return (IValue Parameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }37 public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter { 38 get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; } 40 39 } 41 #endregion 42 43 #region properties 44 public BoolValue ApplyLinearScaling { 45 get { return ApplyLinearScalingParameter.Value; } 40 ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter { 41 get { return ModelCreatorParameter; } 46 42 } 47 43 #endregion … … 52 48 public SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer() 53 49 : base() { 54 Parameters.Add(new Value Parameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic classification solution should be linearly scaled.", new BoolValue(false)));50 Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "")); 55 51 } 56 52 public override IDeepCloneable Clone(Cloner cloner) { … … 58 54 } 59 55 56 [StorableHook(HookType.AfterDeserialization)] 57 private void AfterDeserialization() { 58 // BackwardsCompatibility3.4 59 #region Backwards compatible code, remove with 3.5 60 if (!Parameters.ContainsKey(ModelCreatorParameterName)) 61 Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, "")); 62 #endregion 63 } 64 60 65 protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree) { 61 var model = new SymbolicDiscriminantFunctionClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 62 if (ApplyLinearScaling.Value) 63 SymbolicDiscriminantFunctionClassificationModel.Scale(model, ProblemDataParameter.ActualValue); 64 return new SymbolicDiscriminantFunctionClassificationSolution(model, (IClassificationProblemData)ProblemDataParameter.ActualValue.Clone()); 66 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 67 if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable); 68 69 model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices); 70 return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone()); 65 71 } 66 72 }
Note: See TracChangeset
for help on using the changeset viewer.