Changeset 8900
- Timestamp:
- 11/12/12 13:51:49 (12 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression
- Files:
-
- 8 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionNine.cs
r8825 r8900 42 42 protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 protected override int TrainingPartitionEnd { get { return 10 0; } }45 protected override int TestPartitionStart { get { return 10 0; } }46 protected override int TestPartitionEnd { get { return 110 0; } }44 protected override int TrainingPartitionEnd { get { return 101; } } 45 protected override int TestPartitionStart { get { return 101; } } 46 protected override int TestPartitionEnd { get { return 1102; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { … … 55 55 for (int i = 0; i < data[0].Count; i++) { 56 56 x = data[0][i]; 57 results.Add(Math.Log(x + Math.Sqrt(x *x + 1)));57 results.Add(Math.Log(x + Math.Sqrt(x * x + 1))); 58 58 } 59 59 data.Add(results); -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionOne.cs
r8825 r8900 27 27 public class KeijzerFunctionOne : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 1 f(x) = 0.3 * x *sin(2 * PI * x) "; } }29 public override string Name { get { return "Keijzer 1 f(x) = 0.3 * x *sin(2 * PI * x); Interval [-1, 1]"; } } 30 30 public override string Description { 31 31 get { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionTen.cs
r8825 r8900 44 44 protected override int TrainingPartitionEnd { get { return 100; } } 45 45 protected override int TestPartitionStart { get { return 100; } } 46 protected override int TestPartitionEnd { get { return 10 100; } }46 protected override int TestPartitionEnd { get { return 10301; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionThree.cs
r8825 r8900 27 27 public class KeijzerFunctionThree : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 3 f(x) = 0.3 * x *sin(2 * PI * x) "; } }29 public override string Name { get { return "Keijzer 3 f(x) = 0.3 * x *sin(2 * PI * x); Interval [-3, 3]"; } } 30 30 public override string Description { 31 31 get { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionTwo.cs
r8825 r8900 27 27 public class KeijzerFunctionTwo : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 2 f(x) = 0.3 * x *sin(2 * PI * x) "; } }29 public override string Name { get { return "Keijzer 2 f(x) = 0.3 * x *sin(2 * PI * x); Interval [-2, 2]"; } } 30 30 public override string Description { 31 31 get { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsFunctionFiveteen.cs
r8825 r8900 40 40 + "For each test a training matrix is filled with random numbers between -50 and +50. The test case " 41 41 + "target expressions are limited to one basis function whose maximum depth is three grammar nodes.\"" + Environment.NewLine + Environment.NewLine 42 + "Note: Because of the logarithm only non-negatic values are created for theinput variables!";42 + "Note: Because of the logarithm and the exponential function as denominator only non-negatic values are created for their input variables!"; 43 43 } 44 44 } … … 54 54 List<List<double>> data = new List<List<double>>(); 55 55 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 56 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList());56 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper) 57 57 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper) 58 58 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsFunctionNine.cs
r8825 r8900 40 40 + "For each test a training matrix is filled with random numbers between -50 and +50. The test case " 41 41 + "target expressions are limited to one basis function whose maximum depth is three grammar nodes.\"" + Environment.NewLine + Environment.NewLine 42 + "Note: Because of the square root and the logarithm only non-negatic values are created for the input variables!"; 42 + "Note: Because of the square root and the logarithm only non-negatic values are created for their input variables!" + Environment.NewLine 43 + "Because of the exponential function only only non-positive values are created for its input variable!"; 43 44 } 44 45 } … … 55 56 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper) 56 57 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper) 57 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList());58 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 59 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 58 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 0).ToList()); // note: range is only [-50,0] to prevent NaN values (deviates from gp benchmark paper) 59 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 60 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 60 61 61 62 double x0, x1, x2, x3; -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsFunctionSeven.cs
r8825 r8900 39 39 + "We test each of the test cases on matrices of 10000 rows by 1 to 5 columns with no noise. " 40 40 + "For each test a training matrix is filled with random numbers between -50 and +50. The test case " 41 + "target expressions are limited to one basis function whose maximum depth is three grammar nodes.\""; 41 + "target expressions are limited to one basis function whose maximum depth is three grammar nodes.\"" + Environment.NewLine 42 + "Note: Because of the exponential function only non-negatic values are created for its input variable!"; 42 43 } 43 44 } … … 52 53 protected override List<List<double>> GenerateValues() { 53 54 List<List<double>> data = new List<List<double>>(); 54 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 55 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 56 } 55 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper) 56 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 57 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 58 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 59 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 57 60 58 61 double x0;
Note: See TracChangeset
for help on using the changeset viewer.