Changeset 8660 for branches/GP-MoveOperators/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva
- Timestamp:
- 09/14/12 18:58:15 (12 years ago)
- Location:
- branches/GP-MoveOperators
- Files:
-
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/GP-MoveOperators
- Property svn:ignore
-
old new 21 21 protoc.exe 22 22 _ReSharper.HeuristicLab 3.3 Tests 23 Google.ProtocolBuffers-2.4.1.473.dll
-
- Property svn:mergeinfo changed
- Property svn:ignore
-
branches/GP-MoveOperators/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/KotanchekFunction.cs
r7849 r8660 27 27 public class KotanchekFunction : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Vladislavleva Kotanchek"; } }29 public override string Name { get { return "Vladislavleva-1 F1(X1,X2) = exp(-(X1 - 1))² / (1.2 + (X2 -2.5)²"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine 33 33 + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine 34 + "Function: F1(X1, X2) = e ^-(X1 - 1)^2 / (1.2 + (X2 -2.5)^2" + Environment.NewLine34 + "Function: F1(X1, X2) = exp(-(X1 - 1))² / (1.2 + (X2 -2.5)²" + Environment.NewLine 35 35 + "Training Data: 100 points X1, X2 = Rand(0.3, 4)" + Environment.NewLine 36 36 + "Test Data: 2026 points (X1, X2) = (-0.2:0.1:4.2)" + Environment.NewLine 37 + "Function Set: +, -, *, /, sq aure, x^real, x + real, x + real, e^x, e^-x";37 + "Function Set: +, -, *, /, square, e^x, e^-x, x^eps, x + eps, x * eps"; 38 38 } 39 39 } … … 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 100; } } 45 protected override int TestPartitionStart { get { return 100 0; } }46 protected override int TestPartitionEnd { get { return 3025; } }45 protected override int TestPartitionStart { get { return 100; } } 46 protected override int TestPartitionEnd { get { return 2126; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { … … 53 53 var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>(); 54 54 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 55 data.Add(ValueGenerator.GenerateUniformDistributedValues(100 0, 0.3, 4).ToList());55 data.Add(ValueGenerator.GenerateUniformDistributedValues(100, 0.3, 4).ToList()); 56 56 data[i].AddRange(combinations[i]); 57 57 } -
branches/GP-MoveOperators/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/RationalPolynomialThreeDimensional.cs
r7849 r8660 27 27 public class RationalPolynomialThreeDimensional : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Vladislavleva RatPol3D"; } }29 public override string Name { get { return "Vladislavleva-5 F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine 33 33 + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine 34 + "Function: F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2 ^2* (X1 - 10))" + Environment.NewLine34 + "Function: F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))" + Environment.NewLine 35 35 + "Training Data: 300 points X1, X3 = Rand(0.05, 2), X2 = Rand(1, 2)" + Environment.NewLine 36 36 + "Test Data: 2701 points X1, X3 = (-0.05:0.15:2.1), X2 = (0.95:0.1:2.05)" + Environment.NewLine 37 + "Function Set: +, -, *, /, sq aure, x^real, x + real, x + real";37 + "Function Set: +, -, *, /, square, x^eps, x + eps, x * eps"; 38 38 } 39 39 } … … 49 49 List<List<double>> data = new List<List<double>>(); 50 50 51 int amountOfPoints= 1000;52 data.Add(ValueGenerator.GenerateUniformDistributedValues( amountOfPoints, 0.05, 2).ToList());53 data.Add(ValueGenerator.GenerateUniformDistributedValues( amountOfPoints, 1, 2).ToList());54 data.Add(ValueGenerator.GenerateUniformDistributedValues( amountOfPoints, 0.05, 2).ToList());51 int n = 1000; 52 data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList()); 53 data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 1, 2).ToList()); 54 data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList()); 55 55 56 56 List<List<double>> testData = new List<List<double>>() { -
branches/GP-MoveOperators/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/RationalPolynomialTwoDimensional.cs
r7849 r8660 27 27 public class RationalPolynomialTwoDimensional : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Vladislavleva RatPol2D"; } }29 public override string Name { get { return "Vladislavleva-8 F8(X1, X2) = ((X1 - 3)^4 + (X2 - 3)³ - (X2 -3)) / ((X2 - 2)^4 + 10)"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine 33 33 + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine 34 + "Function: F8(X1, X2) = ((X1 - 3)^4 + (X2 - 3) ^3- (X2 -3)) / ((X2 - 2)^4 + 10)" + Environment.NewLine34 + "Function: F8(X1, X2) = ((X1 - 3)^4 + (X2 - 3)³ - (X2 -3)) / ((X2 - 2)^4 + 10)" + Environment.NewLine 35 35 + "Training Data: 50 points X1, X2 = Rand(0.05, 6.05)" + Environment.NewLine 36 36 + "Test Data: 1157 points X1, X2 = (-0.25:0.2:6.35)" + Environment.NewLine 37 + "Function Set: +, -, *, /, sq aure, x^real, x + real, x + real";37 + "Function Set: +, -, *, /, square, x^eps, x + eps, x * eps"; 38 38 } 39 39 } -
branches/GP-MoveOperators/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/RippleFunction.cs
r7849 r8660 27 27 public class RippleFunction : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Vladislavleva Ripple"; } }29 public override string Name { get { return "Vladislavleva-7 F7(X1, X2) = (X1 - 3)(X2 - 3) + 2 * sin((X1 - 4)(X2 - 4))"; } } 30 30 public override string Description { 31 31 get { … … 35 35 + "Training Data: 300 points X1, X2 = Rand(0.05, 6.05)" + Environment.NewLine 36 36 + "Test Data: 1000 points X1, X2 = Rand(-0.25, 6.35)" + Environment.NewLine 37 + "Function Set: +, -, *, /, sq aure, x^real, x + real, x + real, e^x, e^-x, sin(x), cos(x)";37 + "Function Set: +, -, *, /, square, e^x, e^-x, sin(x), cos(x), x^eps, x + eps, x + eps"; 38 38 } 39 39 } -
branches/GP-MoveOperators/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/SalutowiczFunctionOneDimensional.cs
r7849 r8660 27 27 public class SalutowiczFunctionOneDimensional : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Vladislavleva Salutowicz"; } }29 public override string Name { get { return "Vladislavleva-2 F2(X) = exp(-X) * X³ * cos(X) * sin(X) * (cos(X)sin(X)² - 1)"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine 33 33 + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine 34 + "Function: F2(X) = e ^-X * X^3 * cos(X) * sin(X) * (cos(X)sin(X)^2- 1)" + Environment.NewLine34 + "Function: F2(X) = exp(-X) * X³ * cos(X) * sin(X) * (cos(X)sin(X)² - 1)" + Environment.NewLine 35 35 + "Training Data: 100 points X = (0.05:0.1:10)" + Environment.NewLine 36 36 + "Test Data: 221 points X = (-0.5:0.05:10.5)" + Environment.NewLine 37 + "Function Set: +, -, *, /, sq aure, x^real, x + real, x + real, e^x, e^-x, sin(x), cos(x)";37 + "Function Set: +, -, *, /, square, e^x, e^-x, sin(x), cos(x), x^eps, x + eps, x + eps"; 38 38 } 39 39 } -
branches/GP-MoveOperators/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/SalutowiczFunctionTwoDimensional.cs
r7849 r8660 27 27 public class SalutowiczFunctionTwoDimensional : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Vladislavleva Salutowicz2D"; } }29 public override string Name { get { return "Vladislavleva-3 F3(X1, X2) = exp(-X1) * X1³ * cos(X1) * sin(X1) * (cos(X1)sin(X1)² - 1)(X2 - 5)"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine 33 33 + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine 34 + "Function: F3(X1, X2) = e ^-X1 * X1^3 * cos(X1) * sin(X1) * (cos(X1)sin(X1)^2- 1)(X2 - 5)" + Environment.NewLine34 + "Function: F3(X1, X2) = exp(-X1) * X1³ * cos(X1) * sin(X1) * (cos(X1)sin(X1)² - 1)(X2 - 5)" + Environment.NewLine 35 35 + "Training Data: 601 points X1 = (0.05:0.1:10), X2 = (0.05:2:10.05)" + Environment.NewLine 36 + "Test Data: 2554 points X1 = (-0.5:0.05:10.5), X2 = (-0.5:0.5:10.5)" + Environment.NewLine 37 + "Function Set: +, -, *, /, sqaure, x^real, x + real, x + real, e^x, e^-x, sin(x), cos(x)" + Environment.NewLine + Environment.NewLine 38 + "Important: The stepwidth of the variable X1 in the test partition has been set to 0.1, to fit the amount of data points."; 36 + "Test Data: 4840 points X1 = (-0.5:0.05:10.5), X2 = (-0.5:0.5:10.5)" + Environment.NewLine 37 + "Function Set: +, -, *, /, square, e^x, e^-x, sin(x), cos(x), x^eps, x + eps, x + eps"; 39 38 } 40 39 } … … 45 44 protected override int TrainingPartitionEnd { get { return 601; } } 46 45 protected override int TestPartitionStart { get { return 601; } } 47 protected override int TestPartitionEnd { get { return 3155; } }46 protected override int TestPartitionEnd { get { return 5441; } } 48 47 49 48 protected override List<List<double>> GenerateValues() { … … 55 54 56 55 List<List<double>> testData = new List<List<double>>() { 57 ValueGenerator.GenerateSteps(-0.5, 10.5, 0. 1).ToList(),56 ValueGenerator.GenerateSteps(-0.5, 10.5, 0.05).ToList(), 58 57 ValueGenerator.GenerateSteps(-0.5, 10.5, 0.5).ToList() 59 58 }; -
branches/GP-MoveOperators/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/SineCosineFunction.cs
r7849 r8660 27 27 public class SineCosineFunction : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Vladislavleva SineCosine"; } }29 public override string Name { get { return "Vladislavleva-6 F6(X1, X2) = 6 * sin(X1) * cos(X2)"; } } 30 30 public override string Description { 31 31 get { … … 35 35 + "Training Data: 30 points X1, X2 = Rand(0.1, 5.9)" + Environment.NewLine 36 36 + "Test Data: 961 points X1, X2 = (-0.05:0.02:6.05)" + Environment.NewLine 37 + "Function Set: +, -, *, /, sq aure, x^real, x + real, x + real, e^x, e^-x";37 + "Function Set: +, -, *, /, square, e^x, e^-x, x^eps, x + eps, x * eps"; 38 38 } 39 39 } -
branches/GP-MoveOperators/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/UnwrappedBallFunctionFiveDimensional.cs
r7849 r8660 27 27 public class UnwrappedBallFunctionFiveDimensional : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Vladislavleva UBall5D"; } }29 public override string Name { get { return "Vladislavleva-4 F4(X1, X2, X3, X4, X5) = 10 / (5 + Sum(Xi - 3)^2)"; } } 30 30 public override string Description { 31 31 get { … … 35 35 + "Training Data: 1024 points Xi = Rand(0.05, 6.05)" + Environment.NewLine 36 36 + "Test Data: 5000 points Xi = Rand(-0.25, 6.35)" + Environment.NewLine 37 + "Function Set: +, -, *, /, sq aure, x^real, x + real, x + real";37 + "Function Set: +, -, *, /, square, x^eps, x + eps, x * eps"; 38 38 } 39 39 } -
branches/GP-MoveOperators/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/VladislavlevaInstanceProvider.cs
r7849 r8660 32 32 } 33 33 public override Uri WebLink { 34 get { return new Uri("http:// groups.csail.mit.edu/EVO-DesignOpt/GPBenchmarks/"); }34 get { return new Uri("http://www.gpbenchmarks.org/wiki/index.php?title=Problem_Classification#Vladislavleva_et_al"); } 35 35 } 36 36 public override string ReferencePublication { 37 get { return " "; }37 get { return "McDermott et al., 2012 \"Genetic Programming Needs Better Benchmarks\", in Proc. of GECCO 2012."; } 38 38 } 39 39 … … 41 41 List<IDataDescriptor> descriptorList = new List<IDataDescriptor>(); 42 42 descriptorList.Add(new KotanchekFunction()); 43 descriptorList.Add(new RationalPolynomialTwoDimensional());44 descriptorList.Add(new RationalPolynomialThreeDimensional());45 descriptorList.Add(new RippleFunction());46 43 descriptorList.Add(new SalutowiczFunctionOneDimensional()); 47 44 descriptorList.Add(new SalutowiczFunctionTwoDimensional()); 48 45 descriptorList.Add(new UnwrappedBallFunctionFiveDimensional()); 46 descriptorList.Add(new RationalPolynomialThreeDimensional()); 47 descriptorList.Add(new SineCosineFunction()); 48 descriptorList.Add(new RippleFunction()); 49 descriptorList.Add(new RationalPolynomialTwoDimensional()); 49 50 return descriptorList; 50 51 }
Note: See TracChangeset
for help on using the changeset viewer.