- Timestamp:
- 09/14/12 18:58:15 (12 years ago)
- Location:
- branches/GP-MoveOperators
- Files:
-
- 5 edited
- 1 copied
Legend:
- Unmodified
- Added
- Removed
-
branches/GP-MoveOperators
- Property svn:ignore
-
old new 21 21 protoc.exe 22 22 _ReSharper.HeuristicLab 3.3 Tests 23 Google.ProtocolBuffers-2.4.1.473.dll
-
- Property svn:mergeinfo changed
- Property svn:ignore
-
branches/GP-MoveOperators/HeuristicLab.Algorithms.DataAnalysis/3.4
- Property svn:ignore
-
old new 5 5 *.vs10x 6 6 Plugin.cs 7 *.user
-
- Property svn:ignore
-
branches/GP-MoveOperators/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/AlglibUtil.cs
r7259 r8660 45 45 return matrix; 46 46 } 47 public static double[,] PrepareAndScaleInputMatrix(Dataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, Scaling scaling) { 48 List<string> variablesList = variables.ToList(); 49 List<int> rowsList = rows.ToList(); 50 51 double[,] matrix = new double[rowsList.Count, variablesList.Count]; 52 53 int col = 0; 54 foreach (string column in variables) { 55 var values = scaling.GetScaledValues(dataset, column, rows); 56 int row = 0; 57 foreach (var value in values) { 58 matrix[row, col] = value; 59 row++; 60 } 61 col++; 62 } 63 64 return matrix; 65 } 47 66 } 48 67 } -
branches/GP-MoveOperators/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearDiscriminantAnalysis.cs
r8206 r8660 111 111 IClassificationProblemData problemData, 112 112 IEnumerable<int> rows) { 113 return new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter); 113 var model = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter, new AccuracyMaximizationThresholdCalculator()); 114 model.RecalculateModelParameters(problemData, rows); 115 return model; 114 116 } 115 117 } -
branches/GP-MoveOperators/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitModel.cs
r7259 r8660 109 109 110 110 public MultinomialLogitClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) { 111 return new MultinomialLogitClassificationSolution( problemData, this);111 return new MultinomialLogitClassificationSolution(new ClassificationProblemData(problemData), this); 112 112 } 113 113 IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
Note: See TracChangeset
for help on using the changeset viewer.