Changeset 8620
- Timestamp:
- 09/10/12 15:09:34 (12 years ago)
- Location:
- trunk/sources
- Files:
-
- 1 added
- 5 edited
- 2 moved
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.DataAnalysis.Views/3.4/CovarianceProdView.cs
r8416 r8620 26 26 namespace HeuristicLab.Algorithms.DataAnalysis.Views { 27 27 [View("Covariance Prod View")] 28 [Content(typeof(CovarianceProd ), true)]28 [Content(typeof(CovarianceProduct), true)] 29 29 public partial class CovarianceProdView : AsynchronousContentView { 30 30 31 public new CovarianceProd Content {32 get { return (CovarianceProd )base.Content; }31 public new CovarianceProduct Content { 32 get { return (CovarianceProduct)base.Content; } 33 33 set { base.Content = value; } 34 34 } -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis.Views/3.4/MeanProdView.cs
r8463 r8620 26 26 namespace HeuristicLab.Algorithms.DataAnalysis.Views { 27 27 [View("Mean Product View")] 28 [Content(typeof(MeanProd ), true)]28 [Content(typeof(MeanProduct), true)] 29 29 public partial class MeanProdView : AsynchronousContentView { 30 30 31 public new MeanProd Content {32 get { return (MeanProd )base.Content; }31 public new MeanProduct Content { 32 get { return (MeanProduct)base.Content; } 33 33 set { base.Content = value; } 34 34 } -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceProduct.cs
r8612 r8620 29 29 namespace HeuristicLab.Algorithms.DataAnalysis { 30 30 [StorableClass] 31 [Item(Name = "CovarianceProd ",31 [Item(Name = "CovarianceProduct", 32 32 Description = "Product covariance function for Gaussian processes.")] 33 public sealed class CovarianceProd : Item, ICovarianceFunction {33 public sealed class CovarianceProduct : Item, ICovarianceFunction { 34 34 [Storable] 35 35 private ItemList<ICovarianceFunction> factors; … … 42 42 43 43 [StorableConstructor] 44 private CovarianceProd (bool deserializing)44 private CovarianceProduct(bool deserializing) 45 45 : base(deserializing) { 46 46 } 47 47 48 private CovarianceProd (CovarianceProdoriginal, Cloner cloner)48 private CovarianceProduct(CovarianceProduct original, Cloner cloner) 49 49 : base(original, cloner) { 50 50 this.factors = cloner.Clone(original.factors); … … 52 52 } 53 53 54 public CovarianceProd ()54 public CovarianceProduct() 55 55 : base() { 56 56 this.factors = new ItemList<ICovarianceFunction>(); … … 58 58 59 59 public override IDeepCloneable Clone(Cloner cloner) { 60 return new CovarianceProd (this, cloner);60 return new CovarianceProduct(this, cloner); 61 61 } 62 62 -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/MeanProduct.cs
r8612 r8620 26 26 namespace HeuristicLab.Algorithms.DataAnalysis { 27 27 [StorableClass] 28 [Item(Name = "MeanProd ", Description = "Product of mean functions for Gaussian processes.")]29 public sealed class MeanProd : Item, IMeanFunction {28 [Item(Name = "MeanProduct", Description = "Product of mean functions for Gaussian processes.")] 29 public sealed class MeanProduct : Item, IMeanFunction { 30 30 [Storable] 31 31 private ItemList<IMeanFunction> factors; … … 39 39 40 40 [StorableConstructor] 41 private MeanProd (bool deserializing)41 private MeanProduct(bool deserializing) 42 42 : base(deserializing) { 43 43 } 44 44 45 private MeanProd (MeanProdoriginal, Cloner cloner)45 private MeanProduct(MeanProduct original, Cloner cloner) 46 46 : base(original, cloner) { 47 47 this.factors = cloner.Clone(original.factors); … … 49 49 } 50 50 51 public MeanProd () {51 public MeanProduct() { 52 52 this.factors = new ItemList<IMeanFunction>(); 53 53 } 54 54 public override IDeepCloneable Clone(Cloner cloner) { 55 return new MeanProd (this, cloner);55 return new MeanProduct(this, cloner); 56 56 } 57 57 -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/HeuristicLab.Algorithms.DataAnalysis-3.4.csproj
r8615 r8620 120 120 </Compile> 121 121 <Compile Include="FixedDataAnalysisAlgorithm.cs" /> 122 <Compile Include="GaussianProcess\CovarianceProduct.cs" /> 123 <Compile Include="GaussianProcess\CovarianceScale.cs" /> 122 124 <Compile Include="GaussianProcess\CovarianceRationalQuadraticArd.cs" /> 123 125 <Compile Include="GaussianProcess\CovarianceRationalQuadraticIso.cs" /> … … 129 131 <Compile Include="GaussianProcess\CovarianceNoise.cs" /> 130 132 <Compile Include="GaussianProcess\CovarianceConst.cs" /> 131 <Compile Include="GaussianProcess\MeanProd .cs" />133 <Compile Include="GaussianProcess\MeanProduct.cs" /> 132 134 <Compile Include="GaussianProcess\MeanSum.cs" /> 133 <Compile Include="GaussianProcess\CovarianceProd.cs" />134 135 <Compile Include="GaussianProcess\CovarianceSum.cs" /> 135 136 <Compile Include="GaussianProcess\CovariancePeriodic.cs" /> -
trunk/sources/HeuristicLab.Tests/HeuristicLab.Algorithms.DataAnalysis-3.4/GaussianProcessFunctionsTest.cs
r8615 r8620 77 77 [TestMethod] 78 78 public void MeanProdTest() { 79 var prod = new MeanProd ();79 var prod = new MeanProduct(); 80 80 prod.Factors.Add(new MeanConst()); 81 81 prod.Factors.Add(new MeanConst()); … … 1379 1379 ); 1380 1380 } 1381 1382 [TestMethod] 1383 public void CovScaleTest() { 1384 var cov = new CovarianceScale(); 1385 cov.CovarianceFunctionParameter.Value = new CovarianceSquaredExponentialIso(); 1386 TestCovarianceFunction(cov, 0, 1387 new double[,] 1388 { 1389 { 0.5770, 0.5404, 0.8569, 0.5612, 0.7545, 0.4981, 0.6649, 0.7483, 0.6564, 0.8184}, 1390 { 0.6206, 0.7027, 0.7091, 0.6015, 0.7295, 0.5338, 0.6706, 0.8202, 0.7155, 0.8029}, 1391 { 0.7743, 0.7513, 0.8468, 0.6864, 0.5644, 0.7861, 0.8404, 0.6625, 0.7555, 0.8335}, 1392 { 0.7773, 0.5513, 0.7793, 0.7166, 0.4533, 0.5870, 0.8913, 0.8797, 0.8656, 0.8245}, 1393 { 0.8839, 0.5934, 0.7689, 0.8982, 0.4126, 0.4742, 0.7883, 0.9202, 0.9077, 0.8649}, 1394 { 0.8746, 0.7341, 0.7021, 0.8323, 0.4826, 0.5923, 0.8706, 0.9508, 0.9524, 0.8660}, 1395 { 0.6133, 0.7560, 0.7280, 0.5749, 0.8722, 0.5651, 0.6530, 0.6259, 0.6633, 0.8194}, 1396 { 0.6113, 0.6277, 0.8110, 0.5489, 0.7110, 0.6222, 0.6948, 0.5425, 0.6227, 0.7828}, 1397 { 0.6394, 0.6950, 0.8669, 0.6107, 0.7933, 0.5985, 0.6824, 0.6858, 0.6703, 0.8492}, 1398 { 0.5791, 0.7156, 0.6274, 0.5324, 0.6323, 0.6100, 0.6863, 0.8091, 0.6855, 0.7173}, 1399 }, 1400 new double[][,] 1401 { 1402 new double[,] 1403 { 1404 { 2.0000, 1.6472, 1.1513, 1.3142, 1.3662, 1.2437, 1.6267, 1.4148, 1.7372, 1.2786}, 1405 { 1.6472, 2.0000, 1.0689, 1.1876, 1.4541, 1.5370, 1.5174, 1.0103, 1.5898, 1.8381}, 1406 { 1.1513, 1.0689, 2.0000, 1.2199, 1.3398, 1.2402, 1.2244, 1.5320, 1.5293, 1.0276}, 1407 { 1.3142, 1.1876, 1.2199, 2.0000, 1.5197, 1.7027, 1.1555, 1.2033, 1.0675, 1.1291}, 1408 { 1.3662, 1.4541, 1.3398, 1.5197, 2.0000, 1.7299, 1.0916, 0.9989, 1.3706, 1.3407}, 1409 { 1.2437, 1.5370, 1.2402, 1.7027, 1.7299, 2.0000, 1.2223, 0.9923, 1.1787, 1.5758}, 1410 { 1.6267, 1.5174, 1.2244, 1.1555, 1.0916, 1.2223, 2.0000, 1.6461, 1.6369, 1.1928}, 1411 { 1.4148, 1.0103, 1.5320, 1.2033, 0.9989, 0.9923, 1.6461, 2.0000, 1.5176, 0.7806}, 1412 { 1.7372, 1.5898, 1.5293, 1.0675, 1.3706, 1.1787, 1.6369, 1.5176, 2.0000, 1.3009}, 1413 { 1.2786, 1.8381, 1.0276, 1.1291, 1.3407, 1.5758, 1.1928, 0.7806, 1.3009, 2.0000}, 1414 }, 1415 new double[,] 1416 { 1417 { 0, 0.3197, 0.6358, 0.5518, 0.5207, 0.5909, 0.3361, 0.4897, 0.2447, 0.5720}, 1418 { 0.3197, 0, 0.6697, 0.6190, 0.4635, 0.4047, 0.4190, 0.6899, 0.3650, 0.1552}, 1419 { 0.6358, 0.6697, 0, 0.6031, 0.5367, 0.5927, 0.6008, 0.4084, 0.4103, 0.6843}, 1420 { 0.5518, 0.6190, 0.6031, 0, 0.4173, 0.2740, 0.6339, 0.6114, 0.6702, 0.6455}, 1421 { 0.5207, 0.4635, 0.5367, 0.4173, 0, 0.2510, 0.6610, 0.6935, 0.5180, 0.5362}, 1422 { 0.5909, 0.4047, 0.5927, 0.2740, 0.2510, 0, 0.6019, 0.6955, 0.6232, 0.3756}, 1423 { 0.3361, 0.4190, 0.6008, 0.6339, 0.6610, 0.6019, 0, 0.3205, 0.3279, 0.6165}, 1424 { 0.4897, 0.6899, 0.4084, 0.6114, 0.6935, 0.6955, 0.3205, 0, 0.4189, 0.7344}, 1425 { 0.2447, 0.3650, 0.4103, 0.6702, 0.5180, 0.6232, 0.3279, 0.4189, 0, 0.5595}, 1426 { 0.5720, 0.1552, 0.6843, 0.6455, 0.5362, 0.3756, 0.6165, 0.7344, 0.5595, 0}, 1427 }, 1428 new double[,] 1429 { 1430 { 2.0000, 1.6472, 1.1513, 1.3142, 1.3662, 1.2437, 1.6267, 1.4148, 1.7372, 1.2786}, 1431 { 1.6472, 2.0000, 1.0689, 1.1876, 1.4541, 1.5370, 1.5174, 1.0103, 1.5898, 1.8381}, 1432 { 1.1513, 1.0689, 2.0000, 1.2199, 1.3398, 1.2402, 1.2244, 1.5320, 1.5293, 1.0276}, 1433 { 1.3142, 1.1876, 1.2199, 2.0000, 1.5197, 1.7027, 1.1555, 1.2033, 1.0675, 1.1291}, 1434 { 1.3662, 1.4541, 1.3398, 1.5197, 2.0000, 1.7299, 1.0916, 0.9989, 1.3706, 1.3407}, 1435 { 1.2437, 1.5370, 1.2402, 1.7027, 1.7299, 2.0000, 1.2223, 0.9923, 1.1787, 1.5758}, 1436 { 1.6267, 1.5174, 1.2244, 1.1555, 1.0916, 1.2223, 2.0000, 1.6461, 1.6369, 1.1928}, 1437 { 1.4148, 1.0103, 1.5320, 1.2033, 0.9989, 0.9923, 1.6461, 2.0000, 1.5176, 0.7806}, 1438 { 1.7372, 1.5898, 1.5293, 1.0675, 1.3706, 1.1787, 1.6369, 1.5176, 2.0000, 1.3009}, 1439 { 1.2786, 1.8381, 1.0276, 1.1291, 1.3407, 1.5758, 1.1928, 0.7806, 1.3009, 2.0000}, 1440 }, 1441 } 1442 ); 1443 TestCovarianceFunction(cov, 1, 1444 new double[,] 1445 { 1446 { 50.6828, 50.2342, 53.4685, 50.4920, 52.5559, 49.6832, 51.6641, 52.4976, 51.5740, 53.1373}, 1447 { 51.1850, 52.0523, 52.1160, 50.9689, 52.3171, 50.1516, 51.7239, 53.1529, 52.1794, 52.9998}, 1448 { 52.7403, 52.5260, 53.3832, 51.8877, 50.5317, 52.8481, 53.3281, 51.6395, 52.5652, 53.2686}, 1449 { 52.7683, 50.3705, 52.7860, 52.1901, 49.0546, 50.8004, 53.7544, 53.6589, 53.5423, 53.1907}, 1450 { 53.6941, 50.8746, 52.6909, 53.8103, 48.4337, 49.3535, 52.8689, 53.9867, 53.8874, 53.5365}, 1451 { 53.6171, 52.3616, 52.0459, 53.2586, 49.4713, 50.8619, 53.5837, 54.2264, 54.2390, 53.5454}, 1452 { 51.1026, 52.5698, 52.3019, 50.6571, 53.5972, 50.5394, 51.5383, 51.2437, 51.6476, 53.1463}, 1453 { 51.0802, 51.2635, 53.0723, 50.3407, 52.1347, 51.2021, 51.9731, 50.2612, 51.2082, 52.8185}, 1454 { 51.3920, 51.9750, 53.5529, 51.0735, 52.9133, 50.9343, 51.8460, 51.8810, 51.7204, 53.4037}, 1455 { 50.7067, 52.1810, 51.2605, 50.1330, 51.3144, 51.0653, 51.8868, 53.0548, 51.8777, 52.1974}, 1456 }, 1457 new double[][,] 1458 { 1459 new double[,] 1460 { 1461 { 109.1963, 106.3653, 101.3323, 103.1642, 103.7069, 102.3962, 106.1856, 104.1987, 107.1342, 102.7815}, 1462 { 106.3653, 109.1963, 100.3190, 101.7587, 104.5858, 105.3734, 105.1910, 99.5562, 105.8559, 107.9559}, 1463 { 101.3323, 100.3190, 109.1963, 102.1292, 103.4337, 102.3572, 102.1802, 105.3271, 105.3022, 99.7852}, 1464 { 103.1642, 101.7587, 102.1292, 109.1963, 105.2127, 106.8440, 101.3820, 101.9396, 100.3013, 101.0662}, 1465 { 103.7069, 104.5858, 103.4337, 105.2127, 109.1963, 107.0730, 100.6050, 99.4038, 103.7518, 103.4431}, 1466 { 102.3962, 105.3734, 102.3572, 106.8440, 107.0730, 109.1963, 102.1564, 99.3144, 101.6555, 105.7297}, 1467 { 106.1856, 105.1910, 102.1802, 101.3820, 100.6050, 102.1564, 109.1963, 106.3564, 106.2756, 101.8199}, 1468 { 104.1987, 99.5562, 105.3271, 101.9396, 99.4038, 99.3144, 106.3564, 109.1963, 105.1926, 96.1411}, 1469 { 107.1342, 105.8559, 105.3022, 100.3013, 103.7518, 101.6555, 106.2756, 105.1926, 109.1963, 103.0217}, 1470 { 102.7815, 107.9559, 99.7852, 101.0662, 103.4431, 105.7297, 101.8199, 96.1411, 103.0217, 109.1963}, 1471 }, 1472 new double[,] 1473 { 1474 { 0, 2.7940, 7.5738, 5.8624, 5.3491, 6.5838, 2.9688, 4.8814, 2.0425, 6.2226}, 1475 { 2.7940, 0, 8.5062, 7.1784, 4.5117, 3.7552, 3.9310, 9.2014, 3.2888, 1.2334}, 1476 { 7.5738, 8.5062, 0, 6.8334, 5.6078, 6.6203, 6.7857, 3.7999, 3.8238, 8.9934}, 1477 { 5.8624, 7.1784, 6.8334, 0, 3.9101, 2.3268, 7.5278, 7.0100, 8.5225, 7.8196}, 1478 { 5.3491, 4.5117, 5.6078, 3.9101, 0, 2.1025, 8.2441, 9.3397, 5.3065, 5.5989}, 1479 { 6.5838, 3.7552, 6.6203, 2.3268, 2.1025, 0, 6.8080, 9.4206, 7.2742, 3.4110}, 1480 { 2.9688, 3.9310, 6.7857, 7.5278, 8.2441, 6.8080, 0, 2.8026, 2.8812, 7.1214}, 1481 { 4.8814, 9.2014, 3.7999, 7.0100, 9.3397, 9.4206, 2.8026, 0, 3.9294, 12.2417}, 1482 { 2.0425, 3.2888, 3.8238, 8.5225, 5.3065, 7.2742, 2.8812, 3.9294, 0, 5.9966}, 1483 { 6.2226, 1.2334, 8.9934, 7.8196, 5.5989, 3.4110, 7.1214, 12.2417, 5.9966, 0}, 1484 }, 1485 new double[,] 1486 { 1487 { 109.1963, 106.3653, 101.3323, 103.1642, 103.7069, 102.3962, 106.1856, 104.1987, 107.1342, 102.7815}, 1488 { 106.3653, 109.1963, 100.3190, 101.7587, 104.5858, 105.3734, 105.1910, 99.5562, 105.8559, 107.9559}, 1489 { 101.3323, 100.3190, 109.1963, 102.1292, 103.4337, 102.3572, 102.1802, 105.3271, 105.3022, 99.7852}, 1490 { 103.1642, 101.7587, 102.1292, 109.1963, 105.2127, 106.8440, 101.3820, 101.9396, 100.3013, 101.0662}, 1491 { 103.7069, 104.5858, 103.4337, 105.2127, 109.1963, 107.0730, 100.6050, 99.4038, 103.7518, 103.4431}, 1492 { 102.3962, 105.3734, 102.3572, 106.8440, 107.0730, 109.1963, 102.1564, 99.3144, 101.6555, 105.7297}, 1493 { 106.1856, 105.1910, 102.1802, 101.3820, 100.6050, 102.1564, 109.1963, 106.3564, 106.2756, 101.8199}, 1494 { 104.1987, 99.5562, 105.3271, 101.9396, 99.4038, 99.3144, 106.3564, 109.1963, 105.1926, 96.1411}, 1495 { 107.1342, 105.8559, 105.3022, 100.3013, 103.7518, 101.6555, 106.2756, 105.1926, 109.1963, 103.0217}, 1496 { 102.7815, 107.9559, 99.7852, 101.0662, 103.4431, 105.7297, 101.8199, 96.1411, 103.0217, 109.1963}, 1497 }, 1498 } 1499 ); 1500 } 1501 1381 1502 [TestMethod] 1382 1503 public void CovProdTest() { 1383 var cov = new CovarianceProd ();1504 var cov = new CovarianceProduct(); 1384 1505 cov.Factors.Add(new CovarianceSquaredExponentialIso()); 1385 1506 cov.Factors.Add(new CovarianceLinear()); -
trunk/sources/HeuristicLab.Tests/HeuristicLab.Algorithms.DataAnalysis-3.4/GaussianProcessModelTest.cs
r8615 r8620 43 43 var covarianceFunction = new CovarianceSum(); 44 44 covarianceFunction.Terms.Add(new CovarianceSquaredExponentialIso()); 45 var prod = new CovarianceProd ();45 var prod = new CovarianceProduct(); 46 46 prod.Factors.Add(new CovarianceSquaredExponentialIso()); 47 47 prod.Factors.Add(new CovariancePeriodic());
Note: See TracChangeset
for help on using the changeset viewer.