Changeset 8615
- Timestamp:
- 09/10/12 13:42:43 (12 years ago)
- Location:
- trunk/sources
- Files:
-
- 4 edited
- 4 moved
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceRationalQuadraticArd.cs
r8612 r8615 30 30 namespace HeuristicLab.Algorithms.DataAnalysis { 31 31 [StorableClass] 32 [Item(Name = "CovarianceR QArd",32 [Item(Name = "CovarianceRationalQuadraticArd", 33 33 Description = "Rational quadratic covariance function with automatic relevance determination for Gaussian processes.")] 34 public sealed class CovarianceR QArd : ParameterizedNamedItem, ICovarianceFunction {34 public sealed class CovarianceRationalQuadraticArd : ParameterizedNamedItem, ICovarianceFunction { 35 35 [Storable] 36 36 private double sf2; … … 58 58 59 59 [StorableConstructor] 60 private CovarianceR QArd(bool deserializing)60 private CovarianceRationalQuadraticArd(bool deserializing) 61 61 : base(deserializing) { 62 62 } 63 63 64 private CovarianceR QArd(CovarianceRQArd original, Cloner cloner)64 private CovarianceRationalQuadraticArd(CovarianceRationalQuadraticArd original, Cloner cloner) 65 65 : base(original, cloner) { 66 66 this.scaleParameter = cloner.Clone(original.scaleParameter); … … 79 79 } 80 80 81 public CovarianceR QArd()81 public CovarianceRationalQuadraticArd() 82 82 : base() { 83 83 Name = ItemName; … … 96 96 97 97 public override IDeepCloneable Clone(Cloner cloner) { 98 return new CovarianceR QArd(this, cloner);98 return new CovarianceRationalQuadraticArd(this, cloner); 99 99 } 100 100 … … 131 131 i += hyp.Skip(i).Count(); 132 132 } 133 if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceR QArd", "hyp");133 if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceRationalQuadraticArd", "hyp"); 134 134 } 135 135 -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceRationalQuadraticIso.cs
r8612 r8615 29 29 namespace HeuristicLab.Algorithms.DataAnalysis { 30 30 [StorableClass] 31 [Item(Name = "CovarianceR Qiso",31 [Item(Name = "CovarianceRationalQuadraticIso", 32 32 Description = "Isotropic rational quadratic covariance function for Gaussian processes.")] 33 public sealed class CovarianceR Qiso : ParameterizedNamedItem, ICovarianceFunction {33 public sealed class CovarianceRationalQuadraticIso : ParameterizedNamedItem, ICovarianceFunction { 34 34 [Storable] 35 35 private double sf2; … … 51 51 52 52 [StorableConstructor] 53 private CovarianceR Qiso(bool deserializing)53 private CovarianceRationalQuadraticIso(bool deserializing) 54 54 : base(deserializing) { 55 55 } 56 56 57 private CovarianceR Qiso(CovarianceRQiso original, Cloner cloner)57 private CovarianceRationalQuadraticIso(CovarianceRationalQuadraticIso original, Cloner cloner) 58 58 : base(original, cloner) { 59 59 this.sf2 = original.sf2; … … 69 69 } 70 70 71 public CovarianceR Qiso()71 public CovarianceRationalQuadraticIso() 72 72 : base() { 73 73 Name = ItemName; … … 86 86 87 87 public override IDeepCloneable Clone(Cloner cloner) { 88 return new CovarianceR Qiso(this, cloner);88 return new CovarianceRationalQuadraticIso(this, cloner); 89 89 } 90 90 … … 121 121 i++; 122 122 } 123 if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceR Qiso", "hyp");123 if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceRationalQuadraticIso", "hyp"); 124 124 } 125 125 -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceSquaredExponentialArd.cs
r8612 r8615 30 30 namespace HeuristicLab.Algorithms.DataAnalysis { 31 31 [StorableClass] 32 [Item(Name = "CovarianceS Eard", Description = "Squared exponential covariance function with automatic relevance determination for Gaussian processes.")]33 public sealed class CovarianceS Eard : ParameterizedNamedItem, ICovarianceFunction {32 [Item(Name = "CovarianceSquaredExponentialArd", Description = "Squared exponential covariance function with automatic relevance determination for Gaussian processes.")] 33 public sealed class CovarianceSquaredExponentialArd : ParameterizedNamedItem, ICovarianceFunction { 34 34 [Storable] 35 35 private double sf2; … … 45 45 46 46 [StorableConstructor] 47 private CovarianceS Eard(bool deserializing) : base(deserializing) { }48 private CovarianceS Eard(CovarianceSEard original, Cloner cloner)47 private CovarianceSquaredExponentialArd(bool deserializing) : base(deserializing) { } 48 private CovarianceSquaredExponentialArd(CovarianceSquaredExponentialArd original, Cloner cloner) 49 49 : base(original, cloner) { 50 50 this.sf2 = original.sf2; … … 59 59 RegisterEvents(); 60 60 } 61 public CovarianceS Eard()61 public CovarianceSquaredExponentialArd() 62 62 : base() { 63 63 Name = ItemName; … … 74 74 75 75 public override IDeepCloneable Clone(Cloner cloner) { 76 return new CovarianceS Eard(this, cloner);76 return new CovarianceSquaredExponentialArd(this, cloner); 77 77 } 78 78 … … 107 107 i += hyp.Skip(i).Count(); 108 108 } 109 if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for Covarianc SEard", "hyp");109 if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceSquaredExponentialArd", "hyp"); 110 110 } 111 111 -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceSquaredExponentialIso.cs
r8612 r8615 29 29 namespace HeuristicLab.Algorithms.DataAnalysis { 30 30 [StorableClass] 31 [Item(Name = "CovarianceS Eiso",31 [Item(Name = "CovarianceSquaredExponentialIso", 32 32 Description = "Isotropic squared exponential covariance function for Gaussian processes.")] 33 public sealed class CovarianceS Eiso : ParameterizedNamedItem, ICovarianceFunction {33 public sealed class CovarianceSquaredExponentialIso : ParameterizedNamedItem, ICovarianceFunction { 34 34 [Storable] 35 35 private double sf2; … … 45 45 46 46 [StorableConstructor] 47 private CovarianceS Eiso(bool deserializing)47 private CovarianceSquaredExponentialIso(bool deserializing) 48 48 : base(deserializing) { 49 49 } 50 50 51 private CovarianceS Eiso(CovarianceSEiso original, Cloner cloner)51 private CovarianceSquaredExponentialIso(CovarianceSquaredExponentialIso original, Cloner cloner) 52 52 : base(original, cloner) { 53 53 this.sf2 = original.sf2; … … 60 60 } 61 61 62 public CovarianceS Eiso()62 public CovarianceSquaredExponentialIso() 63 63 : base() { 64 64 Name = ItemName; … … 75 75 76 76 public override IDeepCloneable Clone(Cloner cloner) { 77 return new CovarianceS Eiso(this, cloner);77 return new CovarianceSquaredExponentialIso(this, cloner); 78 78 } 79 79 … … 104 104 i++; 105 105 } 106 if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceS Eiso", "hyp");106 if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceSquaredExponentialIso", "hyp"); 107 107 } 108 108 -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessRegression.cs
r8495 r8615 102 102 103 103 Parameters.Add(new ValueParameter<IMeanFunction>(MeanFunctionParameterName, "The mean function to use.", new MeanConst())); 104 Parameters.Add(new ValueParameter<ICovarianceFunction>(CovarianceFunctionParameterName, "The covariance function to use.", new CovarianceS Eiso()));104 Parameters.Add(new ValueParameter<ICovarianceFunction>(CovarianceFunctionParameterName, "The covariance function to use.", new CovarianceSquaredExponentialIso())); 105 105 Parameters.Add(new ValueParameter<IntValue>(MinimizationIterationsParameterName, "The number of iterations for likelihood optimization with LM-BFGS.", new IntValue(20))); 106 106 Parameters.Add(new ValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0))); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/HeuristicLab.Algorithms.DataAnalysis-3.4.csproj
r8612 r8615 120 120 </Compile> 121 121 <Compile Include="FixedDataAnalysisAlgorithm.cs" /> 122 <Compile Include="GaussianProcess\CovarianceRationalQuadraticArd.cs" /> 123 <Compile Include="GaussianProcess\CovarianceRationalQuadraticIso.cs" /> 124 <Compile Include="GaussianProcess\CovarianceSquaredExponentialArd.cs" /> 125 <Compile Include="GaussianProcess\CovarianceSquaredExponentialIso.cs" /> 122 126 <Compile Include="GaussianProcess\HyperParameter.cs" /> 123 <Compile Include="GaussianProcess\CovarianceRQArd.cs" />124 127 <Compile Include="GaussianProcess\CovarianceMaternIso.cs" /> 125 128 <Compile Include="GaussianProcess\CovarianceLinearArd.cs" /> 126 <Compile Include="GaussianProcess\CovarianceRQiso.cs" />127 129 <Compile Include="GaussianProcess\CovarianceNoise.cs" /> 128 130 <Compile Include="GaussianProcess\CovarianceConst.cs" /> … … 144 146 <Compile Include="GaussianProcess\MeanConst.cs" /> 145 147 <Compile Include="GaussianProcess\IMeanFunction.cs" /> 146 <Compile Include="GaussianProcess\CovarianceSEard.cs" />147 <Compile Include="GaussianProcess\CovarianceSEiso.cs" />148 148 <Compile Include="GaussianProcess\GaussianProcessModel.cs" /> 149 149 <Compile Include="GaussianProcess\GaussianProcessRegression.cs" /> -
trunk/sources/HeuristicLab.Tests/HeuristicLab.Algorithms.DataAnalysis-3.4/GaussianProcessFunctionsTest.cs
r8612 r8615 168 168 [TestMethod] 169 169 public void CovSeIsoTest() { 170 TestCovarianceFunction(new CovarianceS Eiso(), 0,170 TestCovarianceFunction(new CovarianceSquaredExponentialIso(), 0, 171 171 new double[,] 172 172 { … … 210 210 } 211 211 ); 212 TestCovarianceFunction(new CovarianceS Eiso(), 1,212 TestCovarianceFunction(new CovarianceSquaredExponentialIso(), 1, 213 213 new double[,] 214 214 { … … 256 256 [TestMethod] 257 257 public void CovRQIsoTest() { 258 TestCovarianceFunction(new CovarianceR Qiso(), 0,258 TestCovarianceFunction(new CovarianceRationalQuadraticIso(), 0, 259 259 new double[,] 260 260 { … … 310 310 } 311 311 ); 312 TestCovarianceFunction(new CovarianceR Qiso(), 1,312 TestCovarianceFunction(new CovarianceRationalQuadraticIso(), 1, 313 313 new double[,] 314 314 { … … 369 369 [TestMethod] 370 370 public void CovRQArdTest() { 371 TestCovarianceFunction(new CovarianceR QArd(), 0,371 TestCovarianceFunction(new CovarianceRationalQuadraticArd(), 0, 372 372 new double[,] 373 373 { … … 479 479 ); 480 480 481 TestCovarianceFunction(new CovarianceR QArd(), 1,481 TestCovarianceFunction(new CovarianceRationalQuadraticArd(), 1, 482 482 new double[,] 483 483 { … … 1090 1090 [TestMethod] 1091 1091 public void CovSEardTest() { 1092 TestCovarianceFunction(new CovarianceS Eard(), 0,1092 TestCovarianceFunction(new CovarianceSquaredExponentialArd(), 0, 1093 1093 new double[,] 1094 1094 { … … 1187 1187 } 1188 1188 ); 1189 TestCovarianceFunction(new CovarianceS Eard(), 1,1189 TestCovarianceFunction(new CovarianceSquaredExponentialArd(), 1, 1190 1190 new double[,] 1191 1191 { … … 1288 1288 public void CovSumTest() { 1289 1289 var cov = new CovarianceSum(); 1290 cov.Terms.Add(new CovarianceS Eiso());1290 cov.Terms.Add(new CovarianceSquaredExponentialIso()); 1291 1291 cov.Terms.Add(new CovarianceLinear()); 1292 1292 TestCovarianceFunction(cov, 0, … … 1382 1382 public void CovProdTest() { 1383 1383 var cov = new CovarianceProd(); 1384 cov.Factors.Add(new CovarianceS Eiso());1384 cov.Factors.Add(new CovarianceSquaredExponentialIso()); 1385 1385 cov.Factors.Add(new CovarianceLinear()); 1386 1386 TestCovarianceFunction(cov, 0, -
trunk/sources/HeuristicLab.Tests/HeuristicLab.Algorithms.DataAnalysis-3.4/GaussianProcessModelTest.cs
r8491 r8615 42 42 var meanFunction = new MeanConst(); 43 43 var covarianceFunction = new CovarianceSum(); 44 covarianceFunction.Terms.Add(new CovarianceS Eiso());44 covarianceFunction.Terms.Add(new CovarianceSquaredExponentialIso()); 45 45 var prod = new CovarianceProd(); 46 prod.Factors.Add(new CovarianceS Eiso());46 prod.Factors.Add(new CovarianceSquaredExponentialIso()); 47 47 prod.Factors.Add(new CovariancePeriodic()); 48 48 covarianceFunction.Terms.Add(prod);
Note: See TracChangeset
for help on using the changeset viewer.