Changeset 8557
- Timestamp:
- 09/03/12 15:26:04 (12 years ago)
- Location:
- branches/HeuristicLab.EvolutionaryTracking
- Files:
-
- 3 added
- 13 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.4/Crossovers/TracingSymbolicExpressionTreeCrossover.cs
r8213 r8557 28 28 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 29 29 30 using CloneMapType = HeuristicLab.Core.ItemDictionary<HeuristicLab.Core.IItem, HeuristicLab.Core.IItem>;31 using TraceMapType = HeuristicLab.Core.ItemDictionary<HeuristicLab.Core.IItem, HeuristicLab.Core.IItemList<HeuristicLab.Core.IItem>>;32 33 30 namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding { 34 31 /// <summary> … … 37 34 [Item("SymbolicExpressionTreeCrossover", "A base class for operators that perform a crossover of symbolic expression trees.")] 38 35 [StorableClass] 39 public abstract class TracingSymbolicExpressionTreeCrossover : SymbolicExpressionTreeOperator, ISymbolicExpressionTreeCrossover {36 public abstract class TracingSymbolicExpressionTreeCrossover : TracingSymbolicExpressionTreeOperator, ISymbolicExpressionTreeCrossover { 40 37 private const string ParentsParameterName = "Parents"; 41 38 private const string ChildParameterName = "Child"; 42 private const string GlobalTraceMapParameterName = "GlobalTraceMap"; 43 private const string GlobalCloneMapParameterName = "GlobalCloneMap"; 44 private const string GlobalFragmentMapParameterName = "GlobalFragmentMap"; 39 45 40 46 41 #region Parameter Properties … … 50 45 public ILookupParameter<ISymbolicExpressionTree> ChildParameter { 51 46 get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters[ChildParameterName]; } 52 }53 public LookupParameter<CloneMapType> GlobalCloneMapParameter {54 get { return (LookupParameter<CloneMapType>)Parameters[GlobalCloneMapParameterName]; }55 }56 public LookupParameter<TraceMapType> GlobalTraceMapParameter {57 get { return (LookupParameter<TraceMapType>)Parameters[GlobalTraceMapParameterName]; }58 }59 public LookupParameter<CloneMapType> GlobalFragmentMapParameter {60 get { return (LookupParameter<CloneMapType>)Parameters[GlobalFragmentMapParameterName]; }61 47 } 62 48 #endregion … … 70 56 set { ChildParameter.ActualValue = value; } 71 57 } 72 public CloneMapType GlobalCloneMap {73 get { return GlobalCloneMapParameter.ActualValue; }74 }75 public TraceMapType GlobalTraceMap {76 get { return GlobalTraceMapParameter.ActualValue; }77 }78 public CloneMapType GlobalFragmentMap {79 get { return GlobalFragmentMapParameter.ActualValue; }80 }81 58 #endregion 82 59 … … 85 62 : base(deserializing) { 86 63 } 87 88 64 protected TracingSymbolicExpressionTreeCrossover(TracingSymbolicExpressionTreeCrossover original, Cloner cloner) 89 65 : base(original, cloner) { 90 66 } 91 92 67 protected TracingSymbolicExpressionTreeCrossover() 93 68 : base() { 94 69 Parameters.Add(new ScopeTreeLookupParameter<ISymbolicExpressionTree>(ParentsParameterName, "The parent symbolic expression trees which should be crossed.")); 95 70 Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(ChildParameterName, "The child symbolic expression tree resulting from the crossover.")); 96 Parameters.Add(new LookupParameter<CloneMapType>(GlobalCloneMapParameterName, "A global map keeping track of trees and their clones (made during selection).")); 97 Parameters.Add(new LookupParameter<CloneMapType>(GlobalFragmentMapParameterName, "A global map keeping track of tree fragments received via crossover.")); 98 Parameters.Add(new LookupParameter<TraceMapType>(GlobalTraceMapParameterName, "A global cache containing tracing info.")); 71 99 72 } 100 101 73 public sealed override IOperation Apply() { 102 74 if (Parents.Length != 2) 103 75 throw new ArgumentException("Number of parents must be exactly two for symbolic expression tree crossover operators."); 104 76 105 // add global trace cache if not already present in global scope 106 var gScope = ExecutionContext.Scope; 107 while (gScope.Parent != null) 108 gScope = gScope.Parent; 109 if (GlobalTraceMap == null) 110 gScope.Variables.Add(new Variable(GlobalTraceMapParameterName, new TraceMapType())); 111 if (GlobalFragmentMap == null) 112 gScope.Variables.Add(new Variable(GlobalFragmentMapParameterName, new CloneMapType())); 113 114 // get original parents (this info will be needed later to construct the genealogy graph) 115 var originalParents = new ItemList<IItem>(Parents.Select(x => GlobalCloneMap[x])); 77 AddTracingVariablesToGlobalScope(); 116 78 117 79 // save the nodes of parent0 in a list so we can track what modifications are made by crossover … … 124 86 var nodes1 = Child.IterateNodesBreadth().ToList(); 125 87 126 // compare the two nodes lists and check the difference (comparing node references so we avoid false functional identity). 127 // if no difference is found, then it is assumed that the whole tree was swapped with itself (it can happen), so the index is 0 128 int i, min = Math.Min(nodes0.Count, nodes1.Count); 129 for (i = 0; i != min; ++i) 130 if (nodes0[i] != nodes1[i]) break; 88 // compare the two node lists and check the difference (comparing node references so we avoid false functional identity). 89 int i = 0, min = Math.Min(nodes0.Count, nodes1.Count); 90 while (i != min && ReferenceEquals(nodes0[i], nodes1[i])) ++i; 91 131 92 // add heredity information into the global variables 132 GlobalTraceMap[Child] = originalParents; // map child to its corresponding parents from the previous generation133 GlobalFragmentMap[Child] = new GenericWrapper< SymbolicExpressionTreeNode>(i == min ? null : (SymbolicExpressionTreeNode)nodes1[i]); // map child to the index of its fragment93 GlobalTraceMap[Child] = new ItemList<IItem>(Parents.Select(x => GlobalCloneMap[x])); ; // map child to its corresponding parents from the previous generation 94 GlobalFragmentMap[Child] = new GenericWrapper<ISymbolicExpressionTreeNode>(i == min ? null : nodes1[i]); // map child to the index of its fragment 134 95 return base.Apply(); 135 96 } -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.4/GenericWrapper.cs
r8213 r8557 6 6 [Item("Generic wrapper", "Wrapper class for non-item HeuristicLab objects")] 7 7 [StorableClass] 8 public class GenericWrapper<T> : NamedItem where T : class { 8 public class GenericWrapper<T> : NamedItem where T : class, IDeepCloneable { 9 [Storable] 9 10 public T Content { get; private set; } 10 11 private GenericWrapper() {12 }13 11 14 12 public GenericWrapper(T content) { … … 17 15 18 16 [StorableConstructor] 19 protected GenericWrapper(bool serializing) 20 : base(serializing) { 21 } 17 private GenericWrapper(bool serializing) : base(serializing) { } 22 18 23 19 private GenericWrapper(GenericWrapper<T> original, Cloner cloner) 24 20 : base(original, cloner) { 21 this.Content = cloner.Clone(Content); 25 22 } 26 23 -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.4/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding-3.4.csproj
r8213 r8557 167 167 <Compile Include="Compiler\SymbolicExpressionTreeCompiler.cs" /> 168 168 <None Include="Plugin.cs.frame" /> 169 <Compile Include="Interfaces\Operators\ITracingSymbolicExpressionTreeOperator.cs" /> 170 <Compile Include="TracingSymbolicExpressionTreeOperator.cs" /> 169 171 <Compile Include="Creators\TracingSymbolicExpressionTreeCreator.cs" /> 170 172 <Compile Include="Creators\FullTreeCreator.cs"> … … 181 183 <Compile Include="Interfaces\ISymbolicExpressionGrammarBase.cs" /> 182 184 <Compile Include="Interfaces\ISymbolicExpressionTreeGrammar.cs" /> 185 <Compile Include="Interfaces\ISymbolicExpressionTreeNodeComparer.cs" /> 183 186 <Compile Include="Interfaces\Operators\ISymbolicExpressionTreeArchitectureAlteringOperator.cs" /> 184 187 <Compile Include="Interfaces\Operators\ISymbolicExpressionTreeGrammarBasedOperator.cs" /> -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.4/Manipulators/TracingSymbolicExpressionTreeManipulator.cs
r8213 r8557 21 21 22 22 using System; 23 using System.Collections.Generic; 23 24 using System.Linq; 24 25 using HeuristicLab.Common; … … 28 29 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 29 30 30 using CloneMapType = HeuristicLab.Core.ItemDictionary<HeuristicLab.Core.IItem, HeuristicLab.Core.IItem>;31 using TraceMapType = HeuristicLab.Core.ItemDictionary<HeuristicLab.Core.IItem, HeuristicLab.Core.IItemList<HeuristicLab.Core.IItem>>;32 33 31 namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding { 34 32 /// <summary> … … 37 35 [Item("TracingSymbolicExpressionTreeManipulator", "A base class for operators that manipulate symbolic expression trees.")] 38 36 [StorableClass] 39 public abstract class TracingSymbolicExpressionTreeManipulator : SymbolicExpressionTreeOperator, ISymbolicExpressionTreeManipulator {37 public abstract class TracingSymbolicExpressionTreeManipulator : TracingSymbolicExpressionTreeOperator, ISymbolicExpressionTreeManipulator { 40 38 private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree"; 41 private const string GlobalTraceMapParameterName = "GlobalTraceMap";42 private const string GlobalCloneMapParameterName = "GlobalCloneMap";43 private const string GlobalFragmentMapParameterName = "GlobalFragmentMap";44 39 45 40 #region Parameter Properties 46 41 public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter { 47 42 get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; } 48 }49 public LookupParameter<CloneMapType> GlobalCloneMapParameter {50 get { return (LookupParameter<CloneMapType>)Parameters[GlobalCloneMapParameterName]; }51 }52 public LookupParameter<TraceMapType> GlobalTraceMapParameter {53 get { return (LookupParameter<TraceMapType>)Parameters[GlobalTraceMapParameterName]; }54 }55 public LookupParameter<CloneMapType> GlobalFragmentMapParameter {56 get { return (LookupParameter<CloneMapType>)Parameters[GlobalFragmentMapParameterName]; }57 43 } 58 44 #endregion … … 61 47 public ISymbolicExpressionTree SymbolicExpressionTree { 62 48 get { return SymbolicExpressionTreeParameter.ActualValue; } 63 }64 public CloneMapType GlobalCloneMap {65 get { return GlobalCloneMapParameter.ActualValue; }66 }67 public TraceMapType GlobalTraceMap {68 get { return GlobalTraceMapParameter.ActualValue; }69 }70 public CloneMapType GlobalFragmentMap {71 get { return GlobalFragmentMapParameter.ActualValue; }72 49 } 73 50 #endregion … … 79 56 : base() { 80 57 Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression tree on which the operator should be applied.")); 81 Parameters.Add(new LookupParameter<CloneMapType>(GlobalCloneMapParameterName, "A global map keeping track of trees and their clones (made during selection)."));82 Parameters.Add(new LookupParameter<TraceMapType>(GlobalTraceMapParameterName, "A global cache containing tracing info."));83 Parameters.Add(new LookupParameter<CloneMapType>(GlobalFragmentMapParameterName, "A global map keeping track of tree fragments received via crossover."));84 58 } 85 59 … … 87 61 ISymbolicExpressionTree tree = SymbolicExpressionTreeParameter.ActualValue; 88 62 89 var gScope = ExecutionContext.Scope; 90 while (gScope.Parent != null) 91 gScope = gScope.Parent; 63 AddTracingVariablesToGlobalScope(); 92 64 93 if (GlobalTraceMap == null) 94 gScope.Variables.Add(new Variable(GlobalTraceMapParameterName, new TraceMapType())); 95 if (GlobalFragmentMap == null) 96 gScope.Variables.Add(new Variable(GlobalFragmentMapParameterName, new CloneMapType())); 97 98 int i = 0; 65 /* The following block needs to be explained in more detail; 66 * If the tree was already affected by crossover (before mutation), then: 67 * - it will already be contained in the GlobalTraceMap 68 * - In order to preserve information, a clone of the tree is created 69 * - The clone represents the intermediate stage of the tree, before mutation is applied 70 * - The clone therefore represents the child after crossover so GlobalTraceMap[clone] will get tree's parents 71 * and GlobalFragmentMap[clone] will get the subtree from clone that represents the cloned fragment 72 * - After tree is mutated, we set GlobalTraceMap[tree] = clone and GlobalFragmentMap[tree] = modified node from tree 73 */ 74 ISymbolicExpressionTreeNode fragment; 99 75 if (GlobalTraceMap.ContainsKey(tree)) { 100 // tree was affected by crossover before mutation 101 // if the tree to be manipulated is already a product of crossover (in the current reproduction phase), 102 // then there exists no relationship with the original "parent". 103 // In order to preserve information, a tree clone is created before mutation and added to the trace map. 104 var clone = (IItem)tree.Clone(); 76 var clone = (IItem)tree.Clone(); // create clone of tree 105 77 GlobalTraceMap[clone] = GlobalTraceMap[tree]; // clone gets parents of tree 106 78 GlobalTraceMap[tree] = new ItemList<IItem> { clone }; // tree gets clone as parent 107 var nodes = tree.IterateNodesBreadth().ToList(); 108 for (i = 0; i != nodes.Count; ++i) { 109 if ((GlobalFragmentMap[tree] as GenericWrapper<SymbolicExpressionTreeNode>).Content == nodes[i]) break; 79 fragment = ((GenericWrapper<ISymbolicExpressionTreeNode>)GlobalFragmentMap[tree]).Content; 80 int index = tree.IterateNodesBreadth().ToList().IndexOf(fragment); // returns -1 if fragment is not present in tree 81 GlobalFragmentMap[clone] = new GenericWrapper<ISymbolicExpressionTreeNode>(index == -1 ? null : ((ISymbolicExpressionTree)clone).IterateNodesBreadth().ElementAt(index)); 82 } else { 83 GlobalTraceMap[tree] = new ItemList<IItem> { GlobalCloneMap[tree] }; 84 } 85 86 var original = GlobalCloneMap[tree]; 87 var nodes0 = ((ISymbolicExpressionTree)original).IterateNodesBreadth().ToList(); 88 89 // perform mutation 90 Manipulate(RandomParameter.ActualValue, tree); 91 92 var nodes1 = tree.IterateNodesBreadth().ToList(); 93 94 int min = Math.Min(nodes0.Count, nodes1.Count); 95 // some tree manipulators only change local parameters while the actual node stays the same 96 // consequently, we need a stronger comparison than ReferenceEquals 97 var comp = SymbolicExpressionTreeNodeComparer; 98 if (comp == null) 99 throw new Exception(Name + ": Could not get SymbolicExpressionTreeNodeComparerParameter!"); 100 var mismatches = new List<int>(); 101 for (int i = 0; i != min; ++i) { 102 if (!comp.Equals(nodes0[i], nodes1[i])) { 103 mismatches.Add(i); 110 104 } 111 var fragment = (SymbolicExpressionTreeNode)(((SymbolicExpressionTree)clone).IterateNodesBreadth().ElementAt(i));112 GlobalFragmentMap[clone] = new GenericWrapper<SymbolicExpressionTreeNode>(fragment);113 } else {114 var original = GlobalCloneMap[tree];115 GlobalTraceMap[tree] = new ItemList<IItem> { original };116 105 } 117 var nodes0 = tree.IterateNodesBreadth().ToList(); 118 Manipulate(RandomParameter.ActualValue, tree); 119 var nodes1 = tree.IterateNodesBreadth().ToList(); 120 int min = Math.Min(nodes0.Count, nodes1.Count); 121 for (i = 0; i != min; ++i) 122 if (nodes0[i] != nodes1[i]) break; 123 GlobalFragmentMap[tree] = new GenericWrapper<SymbolicExpressionTreeNode>(i == min ? null : (SymbolicExpressionTreeNode)nodes1[i]); 106 if (mismatches.Count == 0) // should never happen 107 fragment = null; 108 else 109 fragment = mismatches.Count > 1 ? nodes1[mismatches[0]].Parent : nodes1[mismatches[0]]; 110 GlobalFragmentMap[tree] = new GenericWrapper<ISymbolicExpressionTreeNode>(fragment); 124 111 return base.Apply(); 125 112 } -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.EvolutionaryTracking/3.4/Analyzers/SymbolicExpressionTreeFragmentsAnalyzer.cs
r8213 r8557 33 33 using HeuristicLab.Problems.DataAnalysis; 34 34 using HeuristicLab.Problems.DataAnalysis.Symbolic; 35 // type definitions for convenience 35 36 using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; 36 // type definitions for convenience37 37 using CloneMapType = HeuristicLab.Core.ItemDictionary<HeuristicLab.Core.IItem, HeuristicLab.Core.IItem>; 38 using SymbolicExpressionTreeNodeItem = HeuristicLab.EvolutionaryTracking.GenericWrapper<HeuristicLab.Encodings.SymbolicExpressionTreeEncoding. SymbolicExpressionTreeNode>;38 using SymbolicExpressionTreeNodeItem = HeuristicLab.EvolutionaryTracking.GenericWrapper<HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ISymbolicExpressionTreeNode>; 39 39 using TraceMapType = HeuristicLab.Core.ItemDictionary<HeuristicLab.Core.IItem, HeuristicLab.Core.IItemList<HeuristicLab.Core.IItem>>; 40 40 … … 47 47 [StorableClass] 48 48 public sealed class SymbolicExpressionTreeFragmentsAnalyzer : SingleSuccessorOperator, IAnalyzer { 49 #region Parameter names 49 50 private const string UpdateIntervalParameterName = "UpdateInterval"; 50 51 private const string UpdateCounterParameterName = "UpdateCounter"; … … 62 63 private const string FragmentLengthsDistributionParametersName = "FragmentLengths"; 63 64 private const string FragmentFrequenciesParameterName = "FragmentFrequencies"; 65 private const string ParentsDiversityParameterName = "ParentsDiversity"; 66 #endregion 64 67 65 68 // impact values calculator 66 private SymbolicRegressionSolutionValuesCalculator _calculator = new SymbolicRegressionSolutionValuesCalculator();69 private readonly SymbolicRegressionSolutionValuesCalculator calculator = new SymbolicRegressionSolutionValuesCalculator(); 67 70 68 71 #region Parameter properties … … 97 100 public LookupParameter<DataTable> FragmentLengthsParameter { 98 101 get { return (LookupParameter<DataTable>)Parameters[FragmentLengthsDistributionParametersName]; } 102 } 103 public LookupParameter<DataTable> ParentsDiversityParameter { 104 get { return (LookupParameter<DataTable>)Parameters[ParentsDiversityParameterName]; } 99 105 } 100 106 // auxiliary structures for tracking fragments and individuals from the previous generation … … 165 171 get { return FragmentFrequenciesParameter.ActualValue; } 166 172 } 173 public DataTable ParentsDiversity { 174 get { return ParentsDiversityParameter.ActualValue; } 175 } 167 176 public SymbolicDataAnalysisExpressionTreeInterpreter SymbolicExpressionInterpreter { 168 177 get { return SymbolicExpressionInterpreterParameter.ActualValue; } … … 174 183 175 184 [StorableConstructor] 176 private SymbolicExpressionTreeFragmentsAnalyzer(bool deserializing) 177 : base() { 178 } 179 private SymbolicExpressionTreeFragmentsAnalyzer(SymbolicExpressionTreeFragmentsAnalyzer original, Cloner cloner) 180 : base(original, cloner) { 181 } 185 private SymbolicExpressionTreeFragmentsAnalyzer(bool deserializing) : base(deserializing) { } 186 private SymbolicExpressionTreeFragmentsAnalyzer(SymbolicExpressionTreeFragmentsAnalyzer original, Cloner cloner) : base(original, cloner) { } 182 187 public override IDeepCloneable Clone(Cloner cloner) { 183 188 return new SymbolicExpressionTreeFragmentsAnalyzer(this, cloner); … … 185 190 public SymbolicExpressionTreeFragmentsAnalyzer() 186 191 : base() { 192 #region Add parameters 187 193 // analyzer update counter and update interval 188 194 Parameters.Add(new ValueParameter<IntValue>(UpdateIntervalParameterName, "The interval in which the tree length analysis should be applied.", new IntValue(1))); … … 196 202 Parameters.Add(new LookupParameter<CloneMapType>(SecondaryCloneMapParameterName, "Parameter to store the clone map from the previous generation")); 197 203 Parameters.Add(new LookupParameter<CloneMapType>(SecondaryFragmentMapParameterName, "Parameter to store the fragment map from the previous generation")); 198 // other params204 // fragment statistics parameters 199 205 Parameters.Add(new ValueLookupParameter<ResultCollection>(ResultsParameterName, "The results collection where the analysis values should be stored.")); 200 206 Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations so far.")); … … 202 208 Parameters.Add(new LookupParameter<DataTable>(FragmentLengthsDistributionParametersName, "The data table to store the distribution of fragment lengths.")); 203 209 Parameters.Add(new LookupParameter<DataTable>(FragmentFrequenciesParameterName, "A data structure for fragment frequencies")); 210 Parameters.Add(new LookupParameter<DataTable>(ParentsDiversityParameterName, "A data structure to store the diversity of the parents per generation.")); 204 211 // impact calculation 205 212 Parameters.Add(new LookupParameter<SymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicExpressionInterpreterParameterName, "Interpreter for symbolic expression trees")); 206 213 Parameters.Add(new LookupParameter<RegressionProblemData>(SymbolicRegressionProblemDataParameterName, "The symbolic data analysis problem.")); 214 #endregion 215 207 216 UpdateCounterParameter.Hidden = true; 208 217 UpdateIntervalParameter.Hidden = true; 209 210 //_calculator = new SymbolicRegressionSolutionValuesCalculator();211 218 } 212 219 #region After deserialization code … … 230 237 Parameters.Add(new LookupParameter<ItemList<ItemList<IItem>>>(FragmentFrequenciesParameterName, "A data structure for fragment frequencies")); 231 238 } 239 if (!Parameters.ContainsKey(ParentsDiversityParameterName)) { 240 Parameters.Add(new LookupParameter<DataTable>(ParentsDiversityParameterName, "A data table to store the diversity of the parents per generation.")); 241 } 232 242 } 233 243 #endregion … … 244 254 #endregion 245 255 256 /* A small description of the way this analyzer works 257 * 258 * We keep 3 maps in the global scope: the GlobalTraceMap, the GlobalFragmentMap and the GlobalCloneMap that are updated on each step: selection, crossover, mutation 259 * These maps provide information about the children, parents and transferred fragments as follows: 260 * 261 * 1) GlobalCloneMap 262 * This data structure provides the basis for tracking. In the selection step, every selected individual gets cloned and transferred into the recombination pool. 263 * The GlobalCloneMap keeps track of clones by mapping them to the original individuals. This is an essential step for building the genealogy graph. Using this 264 * structure we can find out how many times each individual was selected. 265 * The GlobalCloneMap consists of Key-Value pairs Clone->Original 266 * 267 * 2) GlobalTraceMap 268 * Keeps information in the form of key-value pairs Child->{Parents}, where {Parents} is a set consisting of 269 * - one parent individual (in the case of mutation), by language abuse we say that the individual that mutation acted on is the parent, 270 * and the resulting individual is the child 271 * - two parent individuals (in the case of crossover), named Parent0 and Parent1. Parent0 is the individual that crossover acts on by replacing 272 * one of its subtrees with a compatible subtree, randomly selected from Parent1 273 * 274 * CROSSOVER 275 * Parent0 Parent1 {Parents} 276 * \ / ^ 277 * \ fragment (inserted from Parent1 into Parent0 to create the Child) ^ [Mapping provided by the GlobalTraceMap] 278 * \ / ^ 279 * \ / ^ 280 * Child Child 281 * 282 * MUTATION 283 * Parent0 284 * | 285 * | [mutation acts on a random node/subtree in the 'parent' individual 286 * | 287 * Child 288 * 289 * Since crossover and mutation act on individuals in the recombination pool (which in fact are clones of individuals from the previous generation), the GlobalTraceMap 290 * is populated with values given by the mappings in the GlobalCloneMap, so that the original parent for each child is known. 291 * 292 * 3) GlobalFragmentMap 293 * Keeps information in the form of Key-Value pairs about an individual and its respective fragment 294 * (ie., the subtree received via crossover or created/altered by mutation) 295 * */ 246 296 public override IOperation Apply() { 247 if (Generations.Value == 0) return base.Apply();248 297 UpdateCounter.Value++; 249 298 if (UpdateCounter.Value == UpdateInterval.Value) { 250 ResultCollection results = ResultsParameter.ActualValue; 251 if (FragmentStatistics == null) { 252 FragmentStatisticsParameter.ActualValue = new DataTable("Fragment Statistics", "Statistical measurements of fragments aggregated over the whole population"); 253 FragmentStatistics.VisualProperties.YAxisTitle = "Fragment length/Similarities"; 254 results.Add(new Result("Fragment Statistics", FragmentStatistics)); 299 UpdateCounter.Value = 0; // reset counter 300 if (Generations.Value > 0) { 301 InitializeParameters(); 302 303 CalculateFragmentStatistics(); 304 305 // save the current generation so it can be compared to the following one, next time the analyzer is applied 306 SecondaryTraceMap = (TraceMapType)GlobalTraceMap.Clone(); 307 SecondaryTraceMap.Clear(); 308 foreach (var m in GlobalTraceMap) 309 SecondaryTraceMap.Add(m.Key, m.Value); 310 311 SecondaryCloneMap.Clear(); 312 foreach (var m in GlobalCloneMap) 313 SecondaryCloneMap.Add(m.Key, m.Value); 314 315 SecondaryFragmentMap.Clear(); 316 foreach (var m in GlobalFragmentMap) 317 SecondaryFragmentMap.Add(m.Key, m.Value); 255 318 } 256 if (FragmentLengths == null) { 257 FragmentLengthsParameter.ActualValue = new DataTable("Fragment Lengths", "Histograms for the distribution of fragment and individual lengths"); 258 FragmentLengths.VisualProperties.YAxisTitle = "Frequency"; 259 results.Add(new Result("Fragment Lengths", FragmentLengths)); 260 } 261 if (FragmentFrequencies == null) { 262 FragmentFrequenciesParameter.ActualValue = new DataTable("Fragment Frequencies", "Frequencies of good and high impact fragments"); 263 FragmentFrequencies.VisualProperties.YAxisTitle = "Frequency"; 264 results.Add(new Result("Fragment Frequencies", FragmentFrequencies)); 265 } 266 if (SecondaryTraceMap == null) { 267 SecondaryTraceMap = new TraceMapType(); 268 } 269 if (SecondaryCloneMap == null) { 270 SecondaryCloneMap = new CloneMapType(); 271 } 272 if (SecondaryFragmentMap == null) { 273 SecondaryFragmentMap = new CloneMapType(); 274 } 275 276 UpdateCounter.Value = 0; // reset counter 277 var gScope = ExecutionContext.Scope; 278 while (gScope.Parent != null) gScope = gScope.Parent; 279 280 // for this kind of tracking/analysis, we need at least 2 successive generations of crossover 281 if (Generations.Value > 1) { 282 #region Fragment Statistics 283 InitializeRows(); 284 // create a dictionary for fast lookup of parents (to see which children from the previous generation become parents, and count their fragments) 285 var parentsLookup = new Dictionary<ISymbolicExpressionTree, bool>(); 286 foreach (var parent in GlobalTraceMap.Values.SelectMany(x => x.Cast<ISymbolicExpressionTree>())) { 287 if (!parentsLookup.ContainsKey(parent)) { 288 parentsLookup.Add(parent, true); 289 } 290 } 291 // the same, for fast lookup of clones (might not be needed after all) 292 var clonesLookup = new Dictionary<ISymbolicExpressionTree, bool>(); 293 foreach (var original in GlobalCloneMap.Values.Cast<ISymbolicExpressionTree>()) { 294 if (!clonesLookup.ContainsKey(original)) { 295 clonesLookup.Add(original, true); 296 } 297 } 298 var goodFragments = new List<ISymbolicExpressionTreeNode>(); 299 var goodParents = new List<ISymbolicExpressionTree>(); 300 var goodChildren = new List<ISymbolicExpressionTree>(); 301 // take all individuals that have received a fragment in the previous generation 302 foreach (var m in SecondaryFragmentMap) { 303 var individual = m.Key as ISymbolicExpressionTree; 304 // check if the individual became a parent in the current generation, 305 // by checking if it appears among the parents from the current generation trace map 306 if (parentsLookup.ContainsKey(individual)) { 307 var fragmentItem = m.Value as SymbolicExpressionTreeNodeItem; 308 var fragment = fragmentItem.Content; 309 if (fragment != null) { 310 goodFragments.Add(fragmentItem.Content); 311 goodParents.AddRange(SecondaryTraceMap[individual].Cast<ISymbolicExpressionTree>()); 312 goodChildren.Add(individual); 313 } 314 } 315 } 316 var allFragments = SecondaryFragmentMap.Values.Where(x => ((SymbolicExpressionTreeNodeItem)x).Content != null).Select(x => ((SymbolicExpressionTreeNodeItem)x).Content as ISymbolicExpressionTreeNode).ToList(); 317 var highImpactFragments = new List<ISymbolicExpressionTreeNode>(); 318 var allParents = SecondaryTraceMap.Values.SelectMany(x => x.Cast<ISymbolicExpressionTree>()).ToList(); 319 var allChildren = SecondaryFragmentMap.Keys.Select(x => x as ISymbolicExpressionTree).ToList(); 320 // high impact fragments 321 //foreach (var c in goodChildren) { 322 // var impactValues = _calculator.CalculateImpactValues(c, SymbolicExpressionInterpreter, SymbolicRegressionProblemData, 0, 0); 323 // var fragmentItem = SecondaryFragmentMap[c] as SymbolicExpressionTreeNodeItem; 324 // var fragment = fragmentItem.Content; 325 // if (fragment != null && impactValues[fragment] > 0.1) 326 // highImpactFragments.Add(fragment); 327 //} 328 FragmentFrequencies.Rows["Frequency of useful fragments"].Values.Add(goodFragments.Count); 329 FragmentFrequencies.Rows["Frequency of high impact fragments"].Values.Add(highImpactFragments.Count); 330 FragmentStatistics.Rows["Fragment lengths (good)"].Values.Add(goodFragments.Average(x => x.GetLength())); 331 FragmentStatistics.Rows["Fragment lengths (all)"].Values.Add(allFragments.Average(x => x.GetLength())); 332 //double avg = highImpactFragments.Count > 0 ? highImpactFragments.Average(x => x.GetLength()) : 0; 333 //FragmentStatistics.Rows["Fragment lengths (high impact)"].Values.Add(avg); 334 FragmentStatistics.Rows["Parent lengths (good)"].Values.Add(goodParents.Average(x => x.Length)); 335 FragmentStatistics.Rows["Parent lengths (all)"].Values.Add(allParents.Average(x => x.Length)); 336 FragmentStatistics.Rows["Child lengths (good)"].Values.Add(goodChildren.Average(x => x.Length)); 337 FragmentStatistics.Rows["Child lengths (all)"].Values.Add(allChildren.Average(x => x.Length)); 338 FragmentStatistics.Rows["Avg visitation length (all children)"].Values.Add(allChildren.Average(x => VisitationLength(x))); 339 FragmentStatistics.Rows["Avg visitation length (good children)"].Values.Add(goodChildren.Average(x => VisitationLength(x))); 340 //FragmentStatistics.Rows["Exact similarity (good fragments)"].Values.Add(CalculateSimilarity(allFragments, (int)SymbolicExpressionTreeMatching.SimilarityLevel.Exact)); 341 //foreach (var f in allFragments) f.SortSubtrees(); 342 //FragmentStatistics.Rows["Exact similarity (all fragments)"].Values.Add(CalculateSimilarity(allFragments, (int)SymbolicExpressionTreeMatching.SimilarityLevel.Exact)); 343 344 FragmentLengths.Rows["All fragments length distribution"].Values.Replace(allFragments.Select(x => (double)x.GetLength())); 345 FragmentLengths.Rows["Useful fragments length distribution"].Values.Replace(goodFragments.Select(x => (double)x.GetLength())); 346 FragmentLengths.Rows["All children length distribution"].Values.Replace(allChildren.Select(x => (double)x.Length)); 347 FragmentLengths.Rows["Useful children length distribution"].Values.Replace(goodChildren.Select(x => (double)x.Length)); 348 #endregion 349 } 350 // save the current generation so it can be compared to the following one, next time the analyzer is applied 351 SecondaryTraceMap.Clear(); 352 foreach (var m in GlobalTraceMap) 353 SecondaryTraceMap.Add(m.Key, m.Value); 354 355 SecondaryCloneMap.Clear(); 356 foreach (var m in GlobalCloneMap) 357 SecondaryCloneMap.Add(m.Key, m.Value); 358 359 SecondaryFragmentMap.Clear(); 360 foreach (var m in GlobalFragmentMap) 361 SecondaryFragmentMap.Add(m.Key, m.Value); 362 363 // clear the global maps to save memory 319 } 320 if (Generations.Value > 0) 364 321 if (this.Successor == null || !(this.Successor is SymbolicExpressionTreeGenealogyAnalyzer)) { 322 // clear the global maps to save memory 365 323 GlobalCloneMap.Clear(); 366 324 GlobalTraceMap.Clear(); 367 325 GlobalFragmentMap.Clear(); 368 326 } 369 }370 327 return base.Apply(); 328 } 329 330 private void InitializeParameters() { 331 #region Init parameters 332 var results = ResultsParameter.ActualValue; 333 334 if (FragmentStatistics == null) { 335 FragmentStatisticsParameter.ActualValue = new DataTable("Fragment Statistics", "Statistical measurements of fragments aggregated over the whole population"); 336 FragmentStatistics.VisualProperties.YAxisTitle = "Fragment length/Similarities"; 337 results.Add(new Result("Fragment Statistics", FragmentStatistics)); 338 } 339 if (FragmentLengths == null) { 340 FragmentLengthsParameter.ActualValue = new DataTable("Fragment Lengths", "Histograms for the distribution of fragment and individual lengths"); 341 FragmentLengths.VisualProperties.YAxisTitle = "Frequency"; 342 results.Add(new Result("Fragment Lengths", FragmentLengths)); 343 } 344 if (FragmentFrequencies == null) { 345 FragmentFrequenciesParameter.ActualValue = new DataTable("Fragment Frequencies", "Frequencies of good and high impact fragments"); 346 FragmentFrequencies.VisualProperties.YAxisTitle = "Frequency"; 347 results.Add(new Result("Fragment Frequencies", FragmentFrequencies)); 348 } 349 if (ParentsDiversity == null) { 350 ParentsDiversityParameter.ActualValue = new DataTable("Parents Diversity", "Number of unique parents per generation"); 351 ParentsDiversity.VisualProperties.YAxisTitle = "Unique parents"; 352 results.Add(new Result("Parents Diversity", ParentsDiversity)); 353 } 354 if (SecondaryTraceMap == null) { 355 SecondaryTraceMap = new TraceMapType(); 356 } 357 if (SecondaryCloneMap == null) { 358 SecondaryCloneMap = new CloneMapType(); 359 } 360 if (SecondaryFragmentMap == null) { 361 SecondaryFragmentMap = new CloneMapType(); 362 } 363 #endregion 371 364 } 372 365 … … 435 428 if (!FragmentFrequencies.Rows.ContainsKey("Frequency of high impact fragments")) { 436 429 FragmentFrequencies.Rows.Add(new DataRow("Frequency of high impact fragments") { 430 VisualProperties = { StartIndexZero = true } 431 }); 432 } 433 if (!ParentsDiversity.Rows.ContainsKey("Unique parents")) { 434 ParentsDiversity.Rows.Add(new DataRow("Unique parents") { 437 435 VisualProperties = { StartIndexZero = true } 438 436 }); … … 473 471 } 474 472 473 private void CalculateFragmentStatistics() { 474 // for this kind of tracking/analysis, we need at least 2 successive generations of crossover 475 if (Generations.Value > 1) { 476 InitializeRows(); 477 478 #region Fragment Statistics 479 // create a hashset for fast lookup of parents (to see which children from the previous generation become parents, and count their fragments) 480 var parentsLookup = new HashSet<ISymbolicExpressionTree>(GlobalTraceMap.Values.SelectMany(x => x.Cast<ISymbolicExpressionTree>())); 481 var allParents = SecondaryTraceMap.Values.SelectMany(x => x.Cast<ISymbolicExpressionTree>()).ToList(); 482 var allChildren = SecondaryFragmentMap.Keys.Cast<ISymbolicExpressionTree>().ToList(); /* SecondaryTraceMap.Keys should be the same with SecondaryFragmentMap.Keys */ 483 var allFragments = SecondaryFragmentMap.Values.Cast<SymbolicExpressionTreeNodeItem>().Select(x => x.Content).Where(x => x != null).ToList(); 484 // "good" fragments are fragments contained in a surviving offspring (that became a parent) 485 // "good" parents are those that produced a surviving offspring 486 // "good" children are the surviving offspring 487 var goodFragments = new List<ISymbolicExpressionTreeNode>(); 488 var goodParents = new List<ISymbolicExpressionTree>(); 489 var goodChildren = new List<ISymbolicExpressionTree>(); 490 491 // take all individuals that have received a fragment in the previous generation 492 foreach (var m in SecondaryFragmentMap) { 493 var individual = m.Key as ISymbolicExpressionTree; 494 // check if the individual became a parent in the current generation, 495 // by checking if it appears among the parents from the current generation trace map 496 if (parentsLookup.Contains(individual)) { 497 var symbExprTreeNodeItem = m.Value as SymbolicExpressionTreeNodeItem; 498 var fragment = symbExprTreeNodeItem.Content; 499 if (fragment != null) { 500 goodFragments.Add(fragment); 501 goodParents.AddRange(SecondaryTraceMap[individual].Cast<ISymbolicExpressionTree>()); 502 goodChildren.Add(individual); 503 } 504 } 505 } 506 507 if (false) { 508 var highImpactFragments = new List<ISymbolicExpressionTreeNode>(); 509 foreach (var child in goodChildren) { 510 var impactValues = calculator.CalculateImpactValues(child, SymbolicExpressionInterpreter, SymbolicRegressionProblemData, 0, 0); 511 var fragmentItem = SecondaryFragmentMap[child] as SymbolicExpressionTreeNodeItem; 512 var fragment = fragmentItem.Content; 513 if (fragment != null && impactValues[fragment] > 0.1) { 514 if (highImpactFragments.Contains(fragment, new SymbolicExpressionTreeNodeSimilarityComparer(SimilarityLevel.Exact))) 515 continue; 516 // prune fragment (remove irrelevant/low impact nodes) 517 // this works because a child will never have an impact value greater than its parent 518 foreach (var fnode in fragment.IterateNodesBreadth().Where(x => x.SubtreeCount > 0)) { 519 for (int i = 0; i < fnode.SubtreeCount; ++i) { 520 var subtree = fnode.GetSubtree(i); 521 if (impactValues[subtree] < 0.1) 522 fnode.RemoveSubtree(i); 523 } 524 } 525 highImpactFragments.Add(fragment); 526 } 527 } 528 } 529 530 FragmentFrequencies.Rows["Frequency of useful fragments"].Values.Add(goodFragments.Count); 531 // FragmentFrequencies.Rows["Frequency of high impact fragments"].Values.Add(highImpactFragments.Count); 532 FragmentStatistics.Rows["Fragment lengths (good)"].Values.Add(goodFragments.Average(x => x.GetLength())); 533 FragmentStatistics.Rows["Fragment lengths (all)"].Values.Add(allFragments.Average(x => x.GetLength())); 534 // double avg = highImpactFragments.Count > 0 ? highImpactFragments.Average(x => x.GetLength()) : 0; 535 // FragmentStatistics.Rows["Fragment lengths (high impact)"].Values.Add(avg); 536 FragmentStatistics.Rows["Parent lengths (good)"].Values.Add(goodParents.Average(x => x.Length)); 537 FragmentStatistics.Rows["Parent lengths (all)"].Values.Add(allParents.Average(x => x.Length)); 538 FragmentStatistics.Rows["Child lengths (good)"].Values.Add(goodChildren.Average(x => x.Length)); 539 FragmentStatistics.Rows["Child lengths (all)"].Values.Add(allChildren.Average(x => x.Length)); 540 // FragmentStatistics.Rows["Avg visitation length (all children)"].Values.Add(allChildren.Average(x => VisitationLength(x))); 541 // FragmentStatistics.Rows["Avg visitation length (good children)"].Values.Add(goodChildren.Average(x => VisitationLength(x))); 542 FragmentLengths.Rows["All fragments length distribution"].Values.Replace(allFragments.Select(x => (double)x.GetLength())); 543 FragmentLengths.Rows["Useful fragments length distribution"].Values.Replace(goodFragments.Select(x => (double)x.GetLength())); 544 FragmentLengths.Rows["All children length distribution"].Values.Replace(allChildren.Select(x => (double)x.Length)); 545 FragmentLengths.Rows["Useful children length distribution"].Values.Replace(goodChildren.Select(x => (double)x.Length)); 546 ParentsDiversity.Rows["Unique parents"].Values.Add(SecondaryCloneMap.Values.GroupBy(x => x).Count()); 547 #endregion 548 } 549 } 550 475 551 private static int VisitationLength(ISymbolicExpressionTree tree) { 476 552 return VisitationLength(tree.Root); … … 478 554 479 555 private static int VisitationLength(ISymbolicExpressionTreeNode node) { 480 int sum = 0; 481 foreach (var n in node.IterateNodesBreadth()) 482 sum += n.GetLength(); 483 return sum; 556 return node.IterateNodesBreadth().Sum(n => n.GetLength()); 484 557 } 485 558 … … 491 564 /// <param name="mode">The similarity mode (0 - exact, 1 - high, 2 - relaxed)</param> 492 565 /// <returns>The average number of similar fragments</returns> 493 private static double CalculateSimilarity(IList<ISymbolicExpressionTreeNode> fragments, int mode) {566 private static double CalculateSimilarity(IList<ISymbolicExpressionTreeNode> fragments, SimilarityLevel similarity) { 494 567 var visited = new bool[fragments.Count]; 495 568 int groups = 0; … … 498 571 for (int j = i + 1; j != fragments.Count; ++j) { 499 572 if (visited[j]) continue; 500 if (fragments[i].IsSimilarTo(fragments[j], mode)) visited[j] = true; 573 if (fragments[i].IsSimilarTo(fragments[j], similarity)) 574 visited[j] = true; 501 575 } 502 576 ++groups; -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.EvolutionaryTracking/3.4/Analyzers/SymbolicExpressionTreeGenealogyAnalyzer.cs
r8249 r8557 20 20 #endregion 21 21 22 using System;23 using System.Drawing;24 22 using System.Globalization; 25 23 using System.Linq; 26 using System.Text;27 24 using System.Threading; 28 25 using HeuristicLab.Common; … … 44 41 /// An operator that tracks the genealogy of every individual 45 42 /// </summary> 46 [Item("SymbolicExpressionTreeGenealogyAnalyzer", "An operator that tracks t ree lengths of Symbolic Expression Trees")]43 [Item("SymbolicExpressionTreeGenealogyAnalyzer", "An operator that tracks the genealogy of tree individuals")] 47 44 [StorableClass] 48 45 public sealed class SymbolicExpressionTreeGenealogyAnalyzer : SingleSuccessorOperator, IAnalyzer { 46 #region Parameter names 49 47 private const string UpdateIntervalParameterName = "UpdateInterval"; 50 48 private const string UpdateCounterParameterName = "UpdateCounter"; … … 63 61 private const string SymbolicRegressionProblemDataParameterName = "ProblemData"; 64 62 private const string SymbolicDataAnalysisProblemEvaluatorParameterName = "Evaluator"; 63 #endregion 65 64 66 65 #region Parameter properties … … 159 158 160 159 [StorableConstructor] 161 private SymbolicExpressionTreeGenealogyAnalyzer(bool deserializing) 162 : base() { 163 } 164 private SymbolicExpressionTreeGenealogyAnalyzer(SymbolicExpressionTreeGenealogyAnalyzer original, Cloner cloner) 165 : base(original, cloner) { 166 } 160 private SymbolicExpressionTreeGenealogyAnalyzer(bool deserializing) : base(deserializing) { } 161 private SymbolicExpressionTreeGenealogyAnalyzer(SymbolicExpressionTreeGenealogyAnalyzer original, Cloner cloner) : base(original, cloner) { } 167 162 public override IDeepCloneable Clone(Cloner cloner) { 168 163 return new SymbolicExpressionTreeGenealogyAnalyzer(this, cloner); … … 218 213 UpdateCounter.Value = 0; // reset counter 219 214 220 var gScope = ExecutionContext.Scope;221 while (gScope.Parent != null) gScope = gScope.Parent;222 215 SymbolicExpressionTreeGenealogyGraph graph; 223 216 if (!Results.ContainsKey(PopulationGraphResultParameterName)) { … … 227 220 graph = (SymbolicExpressionTreeGenealogyGraph)(Results[PopulationGraphResultParameterName].Value); 228 221 } 229 // get tree quality values (Key => Individual, Value => Quality) 222 223 var gScope = ExecutionContext.Scope; 224 while (gScope.Parent != null) gScope = gScope.Parent; 230 225 var scopes = (from s in gScope.SubScopes 231 226 let individual = s.Variables.First().Value … … 240 235 var indiv = scopes[i].Tree; 241 236 var label = (generation * scopes.Count + i + 1).ToString(CultureInfo.InvariantCulture); 242 if (!graph.HasNode(indiv)) { 243 var node = new GenealogyGraphNode(indiv) { Label = label }; 244 graph.AddNode(node); 245 // node metadata 246 graph[node].Ranks.Add(generation); 247 graph[node].Quality = scopes[i].Quality; 248 graph[node].IsElite = i < Elites.Value; 249 } else { 250 var node = graph.GetNode(indiv); 251 graph[node].Ranks.Add(generation); 252 } 237 var childGraphNode = new SymbolicExpressionGenealogyGraphNode { 238 SymbolicExpressionTree = indiv, 239 Quality = scopes[i].Quality, 240 IsElite = i < Elites.Value, 241 Label = label 242 }; 243 graph.AddNode(childGraphNode); 244 childGraphNode.Ranks.Add(generation); 253 245 if (generation == 0) continue; 254 246 if (!GlobalTraceMap.ContainsKey(indiv)) continue; … … 256 248 var parents = GlobalTraceMap[indiv].Cast<ISymbolicExpressionTree>(); 257 249 foreach (var parent in parents) { 258 object data = ((GenericWrapper<SymbolicExpressionTreeNode>)GlobalFragmentMap[indiv]).Content; 250 var fragmentFromParent = ((GenericWrapper<ISymbolicExpressionTreeNode>)GlobalFragmentMap[indiv]).Content; 251 SymbolicExpressionGenealogyGraphNode parentGraphNode; 259 252 if (GlobalTraceMap.ContainsKey(parent)) { 260 var node = new GenealogyGraphNode(parent) { Label = "X" }; 261 graph.AddNode(node); 262 graph[node].Quality = Evaluate(parent); 263 graph[node].Ranks.Add(generation - 0.5); 264 var pp = GlobalTraceMap[parent].Cast<SymbolicExpressionTree>(); 265 foreach (var p in pp) { 266 data = ((GenericWrapper<SymbolicExpressionTreeNode>)GlobalFragmentMap[parent]).Content; 267 graph.AddArc(p, parent, null, data); 253 parentGraphNode = new SymbolicExpressionGenealogyGraphNode { 254 SymbolicExpressionTree = parent, 255 Quality = Evaluate(parent) 256 }; 257 graph.AddNode(parentGraphNode); 258 parentGraphNode.Ranks.Add(generation - 0.5); 259 var parentParents = GlobalTraceMap[parent].Cast<SymbolicExpressionTree>(); 260 foreach (var parentParent in parentParents) { 261 var fragmentFromParentParent = ((GenericWrapper<ISymbolicExpressionTreeNode>)GlobalFragmentMap[parent]).Content; 262 // we store the fragment in the arc 263 var parentParentGraphNode = graph.GetGraphNodes(parentParent).Last(); 264 graph.AddArc(parentParentGraphNode, parentGraphNode, null, fragmentFromParentParent); 268 265 } 266 } else { // individual is an elite 267 parentGraphNode = graph.GetGraphNodes(parent).Last(); 269 268 } 270 graph.AddArc(parent , indiv, null, data);269 graph.AddArc(parentGraphNode, childGraphNode, null, fragmentFromParent); 271 270 } 272 271 } 273 272 // clear trace and clone maps in preparation for the next generation 274 if (generation == 0) return base.Apply(); 273 274 } 275 if (Generations.Value > 0) 275 276 if (this.Successor == null || !(this.Successor is SymbolicExpressionTreeFragmentsAnalyzer)) { 276 277 GlobalTraceMap.Clear(); … … 278 279 GlobalFragmentMap.Clear(); 279 280 } 280 }281 281 return base.Apply(); 282 282 } … … 296 296 return quality; 297 297 } 298 299 #region Export to dot file300 private static void WriteDot(string path, SymbolicExpressionTreeGenealogyGraph graph) {301 using (var file = new System.IO.StreamWriter(path)) {302 string nl = Environment.NewLine;303 file.WriteLine("digraph \"lineage " + graph.AverageDegree.ToString(CultureInfo.InvariantCulture) + "\" {" + nl + "ratio=auto;" + nl + "mincross=2.0");304 file.WriteLine("\tnode [shape=circle,label=\"\",style=filled]");305 306 foreach (var node in graph.Values) {307 var color = Color.FromArgb((int)((1 - graph[node].Quality) * 255), (int)(graph[node].Quality * 255), 0);308 string fillColor = String.Format("#{0:x2}{1:x2}{2:x2}", color.R, color.G, color.B);309 string shape = "circle";310 if (graph[node].IsElite)311 shape = "doublecircle";312 file.WriteLine("\t\"" + node.Id + "\" [shape=" + shape + ",fillcolor=\"" + fillColor + "\",label=\"" + node.Label + "\"];");313 if (node.InEdges == null)314 continue;315 foreach (var edge in node.InEdges) {316 //var edgeStyle = node.InEdges.Count == 1 ? "dashed" : String.Empty;317 var edgeStyle = String.Empty;318 file.WriteLine("\t\"" + edge.Target.Id + "\" -> \"" + node.Id + "\" [arrowsize=.5, color=\"" + fillColor + "\", style=\"" + edgeStyle + "\"];");319 }320 }321 foreach (var g in graph.Values.GroupBy(x => graph[x].Ranks[0])) {322 var sb = new StringBuilder();323 sb.Append("\t{rank=same;");324 foreach (var node in g)325 sb.Append("\"" + node.Id + "\" ");326 sb.Append("}\n");327 file.Write(sb.ToString());328 }329 file.WriteLine("}");330 }331 }332 #endregion333 298 } 334 299 } -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.EvolutionaryTracking/3.4/HeuristicLab.EvolutionaryTracking-3.4.csproj
r8213 r8557 89 89 <Compile Include="Analyzers\SymbolicExpressionTreeFragmentsAnalyzer.cs" /> 90 90 <Compile Include="Analyzers\SymbolicExpressionTreeGenealogyAnalyzer.cs" /> 91 <Compile Include="Analyzers\SymbolicExpressionTreeLineagesAnalyzer.cs" /> 91 92 <Compile Include="Analyzers\SymbolicExpressionTreeRelativeLengthAnalyzer.cs" /> 92 93 <Compile Include="GenealogyGraph.cs" /> 94 <Compile Include="GenealogyGraphArc.cs" /> 95 <Compile Include="GenealogyGraphNode.cs" /> 93 96 <Compile Include="Interfaces\IGenealogyGraph.cs" /> 97 <Compile Include="Interfaces\IGenealogyGraphNode.cs" /> 98 <Compile Include="Interfaces\ISymbolicExpressionTreeGenealogyGraph.cs" /> 94 99 <Compile Include="Plugin.cs" /> 95 100 <Compile Include="Properties\AssemblyInfo.cs" /> -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.EvolutionaryTracking/3.4/Plugin.cs
r8213 r8557 30 30 [PluginDependency("HeuristicLab.Common.Resources", "3.3")] 31 31 [PluginDependency("HeuristicLab.Core", "3.3")] 32 [PluginDependency("HeuristicLab.Data", "3.3")]33 32 [PluginDependency("HeuristicLab.Encodings.SymbolicExpressionTreeEncoding", "3.4")] 34 33 [PluginDependency("HeuristicLab.Operators", "3.3")] -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic-3.4.csproj
r8213 r8557 169 169 </ItemGroup> 170 170 <ItemGroup> 171 <Compile Include="Analyzers\SymbolicDataAnalysisComplexityAnalyzer.cs" /> 171 172 <Compile Include="Analyzers\SymbolicDataAnalysisSingleObjectiveValidationParetoBestSolutionAnalyzer.cs" /> 172 173 <Compile Include="Analyzers\SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer.cs" /> -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisExpressionTreeMatching.cs
r8213 r8557 1 using System.Collections.Generic; 1 using System; 2 using System.Collections.Generic; 3 using System.IO; 2 4 using System.Linq; 5 using HeuristicLab.Common; 6 using HeuristicLab.Core; 3 7 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 8 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 4 9 5 10 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 6 public class SymbolicExpressionTreeNodeSimilarityComparer : IEqualityComparer<ISymbolicExpressionTreeNode> { 7 8 public SymbolicExpressionTreeNodeSimilarityComparer(int similarityLevel) { 9 _similarityLevel = similarityLevel; 11 public enum SimilarityLevel { 12 Exact, // everything is matched bit by bit (functions and terminals) 13 High, // symbols are matched. leaf node types are matched 14 Relaxed // only symbols are matched, leafs count as wildcards 15 } 16 [Item("SymbolicExpressionTreeNodeSimilarityComparer", "A comparison operator that checks node equality based on different similarity measures.")] 17 [StorableClass] 18 public class SymbolicExpressionTreeNodeSimilarityComparer : Item, ISymbolicExpressionTreeNodeComparer { 19 [StorableConstructor] 20 private SymbolicExpressionTreeNodeSimilarityComparer(bool deserializing) : base(deserializing) { } 21 private SymbolicExpressionTreeNodeSimilarityComparer(SymbolicExpressionTreeNodeSimilarityComparer original, Cloner cloner) : base(original, cloner) { } 22 public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicExpressionTreeNodeSimilarityComparer(this, cloner); } 23 24 private SimilarityLevel similarityLevel; 25 public SimilarityLevel SimilarityLevel { 26 get { return similarityLevel; } 27 set { similarityLevel = value; } 28 } 29 30 public SymbolicExpressionTreeNodeSimilarityComparer() { 31 this.similarityLevel = SimilarityLevel.Exact; 32 } 33 34 public SymbolicExpressionTreeNodeSimilarityComparer(SimilarityLevel similarityLevel) { 35 this.similarityLevel = similarityLevel; 10 36 } 11 37 … … 15 41 16 42 public bool Equals(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b) { 17 if (a.SubtreeCount != b.SubtreeCount) { return false; } 18 if (a.SubtreeCount > 0) { return a.Symbol.ToString().Equals(b.Symbol.ToString()); } 19 // compare leaf nodes according to desired similarity level 20 switch (_similarityLevel) { 21 case ((int)SymbolicExpressionTreeMatching.SimilarityLevel.Exact): 22 if (a is ConstantTreeNode && b is ConstantTreeNode) { 23 return ((ConstantTreeNode)a).Value.Equals(((ConstantTreeNode)b).Value); 24 } 25 if (a is VariableTreeNode && b is VariableTreeNode) { 26 return (a as VariableTreeNode).Weight.Equals((b as VariableTreeNode).Weight); 27 } 43 var ca = a as ConstantTreeNode; 44 var cb = b as ConstantTreeNode; 45 var va = a as VariableTreeNode; 46 var vb = b as VariableTreeNode; 47 48 var aIsConstant = ca != null; 49 var aIsVariable = va != null; 50 var bIsConstant = cb != null; 51 var bIsVariable = vb != null; 52 var aIsFunction = (!(aIsConstant | aIsVariable)); 53 var bIsFunction = (!(bIsConstant | bIsVariable)); 54 55 if (aIsFunction) 56 return bIsFunction && a.Symbol.Name.Equals(b.Symbol.Name); 57 if (bIsFunction) // one is function and the other is not, return false 58 return false; 59 60 switch (similarityLevel) { 61 case (SimilarityLevel.Exact): 62 if (aIsConstant & bIsConstant) 63 return ca.Value.Equals(cb.Value); 64 if (aIsVariable & bIsVariable) 65 return va.Weight.Equals(vb.Weight); 28 66 return false; 29 30 case ((int)SymbolicExpressionTreeMatching.SimilarityLevel.High): 31 return (a is ConstantTreeNode && b is ConstantTreeNode) || (a is VariableTreeNode && b is VariableTreeNode); 32 33 case ((int)SymbolicExpressionTreeMatching.SimilarityLevel.Relaxed): 67 case (SimilarityLevel.High): 68 return ((aIsConstant & bIsConstant) || (aIsVariable & bIsVariable)); 69 case (SimilarityLevel.Relaxed): 34 70 return true; 35 36 71 default: 37 72 return false; … … 39 74 } 40 75 41 private readonly int _similarityLevel; 76 public static bool ExactlySimilar(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b) { 77 return Similar(a, b, SimilarityLevel.Exact); 78 } 79 80 public static bool Similar(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b, SimilarityLevel level) { 81 var comp = new SymbolicExpressionTreeNodeSimilarityComparer(level); 82 return comp.Equals(a, b); 83 } 42 84 } 43 85 44 86 public class SymbolicExpressionTreeNodeOrderingComparer : IComparer<ISymbolicExpressionTreeNode> { 45 87 public int Compare(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b) { 46 if (a is ConstantTreeNode) { 47 if (b is ConstantTreeNode) 48 return a.Symbol.ToString().Equals(b.Symbol.ToString()) ? 49 (a as ConstantTreeNode).Value.CompareTo((b as ConstantTreeNode).Value) : System.String.Compare(a.Symbol.ToString(), b.Symbol.ToString()); 50 return -1; // if b is not constant then we consider a < b because by convention Constant < Variable < Function 51 } 52 if (a is VariableTreeNode) { 53 if (b is ConstantTreeNode) 54 return 1; 55 if (b is VariableTreeNode) 56 return a.Symbol.ToString().Equals(b.Symbol.ToString()) ? 57 (a as VariableTreeNode).Weight.CompareTo((b as VariableTreeNode).Weight) : System.String.Compare(a.Symbol.ToString(), b.Symbol.ToString()); 58 return -1; 59 } 60 if (b is ConstantTreeNode || b is VariableTreeNode) 61 return 1; // a is a Function node and is greater than Constants or Variables 62 63 return a.Symbol.ToString().Equals(b.Symbol.ToString()) ? a.SubtreeCount.CompareTo(b.SubtreeCount) : System.String.Compare(a.Symbol.ToString(), b.Symbol.ToString()); 88 var ca = a as ConstantTreeNode; 89 var cb = b as ConstantTreeNode; 90 var va = a as VariableTreeNode; 91 var vb = b as VariableTreeNode; 92 93 var aIsConstant = ca != null; 94 var aIsVariable = va != null; 95 var bIsConstant = cb != null; 96 var bIsVariable = vb != null; 97 var aIsFunction = (!(aIsConstant | aIsVariable)); 98 var bIsFunction = (!(bIsConstant | bIsVariable)); 99 100 if (aIsFunction) 101 return bIsFunction ? a.Symbol.Name.CompareTo(b.Symbol.Name) : -1; 102 if (bIsFunction) // a is Constant or Variables 103 return 1; 104 if (aIsVariable) 105 return bIsVariable ? va.Weight.CompareTo(vb.Weight) : -1; 106 return 107 bIsVariable ? 1 : ca.Value.CompareTo(cb.Value); 64 108 } 65 109 } … … 68 112 public class SymbolicExpressionTreeEqualityComparer : IEqualityComparer<ISymbolicExpressionTree> { 69 113 public bool Equals(ISymbolicExpressionTree a, ISymbolicExpressionTree b) { 70 return SymbolicExpressionTreeMatching.FindMatch(a, b, _mode) == 0;114 return SymbolicExpressionTreeMatching.FindMatch(a, b, similarityLevel) == 0; 71 115 } 72 116 73 117 public int GetHashCode(ISymbolicExpressionTree tree) { 74 return tree.Length;75 } 76 77 private int _mode;78 public void SetComparisonMode( int mode) {79 _mode = mode;118 return (tree.Length << 8) % 12345; 119 } 120 121 private SimilarityLevel similarityLevel; 122 public void SetComparisonMode(SimilarityLevel simLevel) { 123 similarityLevel = simLevel; 80 124 } 81 125 } 82 126 83 127 public static class SymbolicExpressionTreeMatching { 84 public enum SimilarityLevel { 85 Exact, // everything is matched bit by bit (functions and terminals) 86 High, // symbols are matched. leaf node types are matched 87 Relaxed // only symbols are matched, leafs count as wildcards 88 } 89 90 public static bool IsSimilarTo(this ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, int mode) { 128 public static bool IsSimilarTo(this ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, SimilarityLevel mode) { 91 129 return FindMatch(t1, t2, mode) == 0; 92 130 } 93 public static bool IsSimilarTo(this ISymbolicExpressionTreeNode t1, ISymbolicExpressionTreeNode t2, int mode) { 131 132 public static bool IsSimilarTo(this ISymbolicExpressionTreeNode t1, ISymbolicExpressionTreeNode t2, SimilarityLevel mode) { 94 133 return FindMatch(t1, t2, mode) == 0; 95 134 } 96 135 97 public static bool ContainsFragment(this ISymbolicExpressionTree tree, ISymbolicExpressionTreeNode fragment, int mode) { 98 var nodes = tree.IterateNodesPostfix() as List<ISymbolicExpressionTreeNode>; 99 var fragments = fragment.IterateNodesPostfix() as List<ISymbolicExpressionTreeNode>; 100 return FindMatch(nodes, fragments, mode) != -1; 136 public static bool ContainsFragment(this ISymbolicExpressionTree tree, ISymbolicExpressionTreeNode fragment, SimilarityLevel mode) { 137 var matches = FindMatches(tree, fragment, mode); 138 return matches.Count > 0; 101 139 } 102 140 … … 106 144 107 145 public static void SortSubtrees(this ISymbolicExpressionTreeNode node) { 108 if (node.SubtreeCount > 0) { 109 var subtrees = node.Subtrees as List<ISymbolicExpressionTreeNode>; 110 if (subtrees == null) return; 111 subtrees.Sort(new SymbolicExpressionTreeNodeOrderingComparer()); 112 foreach (var subtree in subtrees) 113 subtree.SortSubtrees(); 114 } 115 } 116 117 public static int FindMatch(ISymbolicExpressionTree a, ISymbolicExpressionTree b, int mode) { 146 if (node.SubtreeCount == 0) return; 147 var subtrees = node.Subtrees as List<ISymbolicExpressionTreeNode>; 148 if (subtrees == null) return; 149 var comparer = new SymbolicExpressionTreeNodeOrderingComparer(); 150 subtrees.Sort(comparer); 151 foreach (var subtree in subtrees) 152 subtree.SortSubtrees(); 153 } 154 155 // return child that is the same as node 156 public static ISymbolicExpressionTreeNode FindChild(this ISymbolicExpressionTreeNode parent, ISymbolicExpressionTreeNode node) { 157 var subtrees = parent.Subtrees as List<ISymbolicExpressionTreeNode>; 158 var comparer = new SymbolicExpressionTreeNodeSimilarityComparer(SimilarityLevel.Exact); 159 return subtrees.Find(x => comparer.Equals(x, node)); 160 } 161 162 public static int FindMatch(ISymbolicExpressionTree a, ISymbolicExpressionTree b, SimilarityLevel similarityLevel) { 118 163 var nodesA = a.IterateNodesPostfix() as List<ISymbolicExpressionTreeNode>; 119 164 var nodesB = b.IterateNodesPostfix() as List<ISymbolicExpressionTreeNode>; 120 return FindMatch(nodesA, nodesB, mode); 121 } 122 public static int FindMatch(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b, int mode) { 165 return FindMatch(nodesA, nodesB, similarityLevel); 166 } 167 168 public static int FindMatch(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b, SimilarityLevel similarityLevel) { 123 169 var nodesA = a.IterateNodesPostfix() as List<ISymbolicExpressionTreeNode>; 124 170 var nodesB = b.IterateNodesPostfix() as List<ISymbolicExpressionTreeNode>; 125 return FindMatch(nodesA, nodesB, mode); 126 } 171 return FindMatch(nodesA, nodesB, similarityLevel); 172 } 173 127 174 // returns the index in the sequence 'seq', where pattern 'pat' is matched, or -1 for no match 128 175 // -1 means no match, 0 means perfect match (the sequences overlap, hence the match index is 0) 129 public static int FindMatch(List<ISymbolicExpressionTreeNode> seq, List<ISymbolicExpressionTreeNode> pat, int mode) {176 public static int FindMatch(List<ISymbolicExpressionTreeNode> seq, List<ISymbolicExpressionTreeNode> pat, SimilarityLevel similarityLevel) { 130 177 int patlen = pat.Count; 131 178 int seqlen = seq.Count; 132 179 if (patlen == 0 || seqlen == 0) return -1; 133 var comparer = new SymbolicExpressionTreeNodeSimilarityComparer( mode);180 var comparer = new SymbolicExpressionTreeNodeSimilarityComparer(similarityLevel); 134 181 if (patlen == seqlen) return seq.SequenceEqual(pat, comparer) ? 0 : -1; 135 182 for (int i = patlen; i <= seqlen; ++i) { … … 140 187 return -1; 141 188 } 189 190 public static List<ISymbolicExpressionTreeNode> FindMatches(ISymbolicExpressionTree tree, ISymbolicExpressionTreeNode fragment, SimilarityLevel similarityLevel) { 191 var comp = new SymbolicExpressionTreeNodeSimilarityComparer(similarityLevel); 192 return FindMatches(tree.Root, fragment, comp); 193 } 194 195 public static List<ISymbolicExpressionTreeNode> 196 FindMatches(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode fragment, SymbolicExpressionTreeNodeSimilarityComparer comp) { 197 var matches = new List<ISymbolicExpressionTreeNode>(); 198 root.ForEachNodePostfix(node => { 199 if (Match(node, fragment, comp) == fragment.GetLength()) matches.Add(node); 200 }); 201 return matches; 202 } 203 204 ///<summary> 205 /// Finds the longest common subsequence in quadratic time and linear space 206 /// Variant of: 207 /// D . S. Hirschberg. A linear space algorithm for or computing maximal common subsequences. 1975. 208 /// http://dl.acm.org/citation.cfm?id=360861 209 /// </summary> 210 /// <returns>Number of pairs that were matched</returns> 211 public static int 212 Match(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b, SymbolicExpressionTreeNodeSimilarityComparer comp) { 213 if (!comp.Equals(a, b)) 214 return 0; 215 216 int m = a.SubtreeCount; 217 int n = b.SubtreeCount; 218 if (m == 0 || n == 0) return 1; 219 220 var matrix = new int[m + 1, n + 1]; 221 for (int i = 1; i <= m; ++i) 222 for (int j = 1; j <= n; ++j) { 223 var ai = a.GetSubtree(i - 1); 224 var bj = b.GetSubtree(j - 1); 225 int match = Match(ai, bj, comp); 226 matrix[i, j] = Math.Max(Math.Max(matrix[i, j - 1], matrix[i - 1, j]), matrix[i - 1, j - 1] + match); 227 } 228 return matrix[m, n] + 1; 229 } 230 231 public static int 232 LCS(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b, SymbolicExpressionTreeNodeSimilarityComparer comp) { 233 var nodesA = a.IterateNodesPrefix().ToList(); 234 var nodesB = b.IterateNodesPrefix().ToList(); 235 int m = nodesA.Count; 236 int n = nodesB.Count; 237 var matrix = new int[m + 1, n + 1]; 238 for (int i = 1; i <= m; ++i) { 239 for (int j = 1; j <= n; ++j) { 240 int w = comp.Equals(a, b) ? 1 : 0; 241 matrix[i, j] = Math.Max(Math.Max(matrix[i, j - 1], matrix[i - 1, j]), matrix[i - 1, j - 1] + w); 242 } 243 } 244 return matrix[m, n]; 245 } 246 247 public static void RenderTree(TextWriter writer, ISymbolicExpressionTree tree) { 248 RenderNode(writer, tree.Root, string.Empty); 249 } 250 251 public static void RenderNode(TextWriter writer, ISymbolicExpressionTreeNode node, string prefix) { 252 string label; 253 if (node is VariableTreeNode) { 254 var variable = node as VariableTreeNode; 255 label = string.Concat(string.Format("{0:0.000}", variable.Weight), '·', variable.VariableName); 256 } else if (node is ConstantTreeNode) { 257 var constant = node as ConstantTreeNode; 258 label = string.Format("{0:0.000}", constant.Value); 259 } else { 260 label = node.Symbol.ToString(); 261 } 262 263 writer.Write(label); 264 if (node.SubtreeCount > 0) { 265 char connector, extender = ' '; 266 var padding = prefix + new string(' ', label.Length); 267 for (int i = 0; i != node.SubtreeCount; ++i) { 268 if (i == 0) { 269 if (node.SubtreeCount > 1) { 270 connector = RenderChars.JunctionDown; 271 extender = RenderChars.VerticalLine; 272 } else { 273 connector = RenderChars.HorizontalLine; 274 extender = ' '; 275 } 276 } else { 277 writer.Write(padding); 278 if (i == node.SubtreeCount - 1) { 279 connector = RenderChars.CornerRight; 280 extender = ' '; 281 } else { 282 connector = RenderChars.JunctionRight; 283 extender = RenderChars.VerticalLine; 284 } 285 } 286 writer.Write(string.Concat(connector, RenderChars.HorizontalLine)); 287 var newPrefix = string.Concat(padding, extender, ' '); 288 RenderNode(writer, node.GetSubtree(i), newPrefix); 289 } 290 } else 291 writer.WriteLine(); 292 } 293 } 294 295 // helper class providing characters for displaying a tree in the console 296 public static class RenderChars { 297 public const char JunctionDown = '┬'; 298 public const char HorizontalLine = '─'; 299 public const char VerticalLine = '│'; 300 public const char JunctionRight = '├'; 301 public const char CornerRight = '└'; 142 302 } 143 303 } -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisProblem.cs
r8213 r8557 319 319 op.EvaluatorParameter.ActualName = EvaluatorParameter.Name; 320 320 } 321 var comparers = ApplicationManager.Manager.GetInstances<ISymbolicExpressionTreeNodeComparer>().ToList(); 322 if (comparers.Count > 0) 323 foreach (var op in operators.OfType<ITracingSymbolicExpressionTreeOperator>()) { 324 op.SymbolicExpressionTreeNodeComparerParameter.ActualValue = comparers.First(); 325 } 321 326 } 322 327 -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.Selection/3.3/Plugin.cs
r8248 r8557 26 26 /// Plugin class for HeuristicLab.Selection plugin. 27 27 /// </summary> 28 [Plugin("HeuristicLab.Selection", "3.3.6.82 36")]28 [Plugin("HeuristicLab.Selection", "3.3.6.8248")] 29 29 [PluginFile("HeuristicLab.Selection-3.3.dll", PluginFileType.Assembly)] 30 30 [PluginDependency("HeuristicLab.Collections", "3.3")] -
branches/HeuristicLab.EvolutionaryTracking/HeuristicLab.Tracking.sln
r8213 r8557 7 7 ProjectSection(SolutionItems) = preProject 8 8 Build.cmd = Build.cmd 9 HeuristicLab.Tracking.vsmdi = HeuristicLab.Tracking.vsmdi 10 Local.testsettings = Local.testsettings 9 11 PreBuildEvent.cmd = PreBuildEvent.cmd 12 TraceAndTestImpact.testsettings = TraceAndTestImpact.testsettings 10 13 EndProjectSection 11 14 EndProject … … 19 22 EndProject 20 23 Global 24 GlobalSection(TestCaseManagementSettings) = postSolution 25 CategoryFile = HeuristicLab.Tracking.vsmdi 26 EndGlobalSection 21 27 GlobalSection(SolutionConfigurationPlatforms) = preSolution 22 28 Debug|Any CPU = Debug|Any CPU
Note: See TracChangeset
for help on using the changeset viewer.