- Timestamp:
- 07/05/12 16:55:26 (12 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3
- Files:
-
- 14 edited
- 3 copied
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/HeuristicLab.Problems.Instances.DataAnalysis-3.3.csproj
r8226 r8238 134 134 <Compile Include="Regression\Keijzer\KeijzerFunctionFifteen.cs" /> 135 135 <Compile Include="Regression\Keijzer\KeijzerFunctionFour.cs" /> 136 <Compile Include="Regression\Keijzer\KeijzerFunctionNine.cs" /> 136 137 <Compile Include="Regression\Keijzer\KeijzerFunctionOne.cs" /> 137 138 <Compile Include="Regression\Keijzer\KeijzerFunctionSeven.cs" /> … … 139 140 <Compile Include="Regression\Keijzer\KeijzerFunctionTen.cs" /> 140 141 <Compile Include="Regression\Keijzer\KeijzerFunctionThirteen.cs" /> 142 <Compile Include="Regression\Keijzer\KeijzerFunctionThree.cs" /> 141 143 <Compile Include="Regression\Keijzer\KeijzerFunctionTwelve.cs" /> 144 <Compile Include="Regression\Keijzer\KeijzerFunctionTwo.cs" /> 142 145 <Compile Include="Regression\Keijzer\KeijzerInstanceProvider.cs" /> 143 146 <Compile Include="Regression\Korns\KornsFunctionEight.cs" /> -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionEight.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunction Nine: ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionEight : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 9f(x) = sqrt(x)"; } }29 public override string Name { get { return "Keijzer 8 f(x) = sqrt(x)"; } } 30 30 public override string Description { 31 31 get { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionEleven.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunction Twelve: ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionEleven : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 1 2f(x, y) = xy + sin((x - 1)(y - 1))"; } }29 public override string Name { get { return "Keijzer 11 f(x, y) = xy + sin((x - 1)(y - 1))"; } } 30 30 public override string Description { 31 31 get { 32 return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x, y) = xy + sin((x - 1)(y - 1))" + Environment.NewLine 35 + "range(train): 20 Training cases x,y = rnd(-3, 3)" + Environment.NewLine 36 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the intercal [-3, 3] (not ca. 360000 as described) " 39 + ", but 5000 cases are created"; 32 return 33 "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 34 + "Authors: Maarten Keijzer" + Environment.NewLine 35 + "Function: f(x, y) = xy + sin((x - 1)(y - 1))" + Environment.NewLine 36 + "range(train): 20 Training cases x,y = rnd(-3, 3)" + Environment.NewLine 37 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 38 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 39 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the interval [-3, 3] (not ca. 360000 as described) " 40 + ", but 5000 cases are created"; 40 41 } 41 42 } … … 46 47 protected override int TrainingPartitionEnd { get { return 20; } } 47 48 protected override int TestPartitionStart { get { return 2500; } } 48 protected override int TestPartitionEnd { get { return 5000; } }49 protected override int TestPartitionEnd { get { return 2600; } } 49 50 50 51 protected override List<List<double>> GenerateValues() { 51 52 List<List<double>> data = new List<List<double>>(); 52 53 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 53 data.Add(ValueGenerator.GenerateUniformDistributedValues(50 00, -3, 3).ToList());54 data.Add(ValueGenerator.GenerateUniformDistributedValues(5020, -3, 3).ToList()); 54 55 } 55 56 -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionFifteen.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunction Sixteen : ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionFifteen : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 1 6 f(x, y) = x^3 / 5 + y^3/ 2 - y - x"; } }29 public override string Name { get { return "Keijzer 15 f(x, y) = x³ / 5 + y³ / 2 - y - x"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 33 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x, y) = x ^3 / 5 + y^3/ 2 - y - x" + Environment.NewLine34 + "Function: f(x, y) = x³ / 5 + y³ / 2 - y - x" + Environment.NewLine 35 35 + "range(train): 20 Training cases x,y = rnd(-3, 3)" + Environment.NewLine 36 36 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 37 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the inter cal [-3, 3] (not ca. 360000 as described) "38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the interval [-3, 3] (not ca. 360000 as described) " 39 39 + ", but 5000 cases are created"; 40 40 } … … 46 46 protected override int TrainingPartitionEnd { get { return 20; } } 47 47 protected override int TestPartitionStart { get { return 2500; } } 48 protected override int TestPartitionEnd { get { return 5000; } }48 protected override int TestPartitionEnd { get { return 2600; } } 49 49 50 50 protected override List<List<double>> GenerateValues() { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionFive.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunction Six: ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionFive : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 6 f(x) = (30 * x * z) / ((x - 10) * y^2)"; } }29 public override string Name { get { return "Keijzer 5 f(x) = (30 * x * z) / ((x - 10) * y²)"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 33 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x) = (30 * x * z) / ((x - 10) * y ^2)" + Environment.NewLine34 + "Function: f(x) = (30 * x * z) / ((x - 10) * y²)" + Environment.NewLine 35 35 + "range(train): 1000 points x,z = rnd(-1, 1), y = rnd(1, 2)" + Environment.NewLine 36 36 + "range(test): 10000 points x,z = rnd(-1, 1), y = rnd(1, 2)" + Environment.NewLine -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionFour.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunctionF ive: ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionFour : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 5 f(x) = x ^ 3 * exp(-x) * cos(x) * sin(x) * (sin(x) ^ 2* cos(x) - 1)"; } }29 public override string Name { get { return "Keijzer 4 f(x) = x³ * exp(-x) * cos(x) * sin(x) * (sin(x)² * cos(x) - 1)"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 33 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x) = x ^ 3 * exp(-x) * cos(x) * sin(x) * (sin(x) ^ 2* cos(x) - 1)" + Environment.NewLine34 + "Function: f(x) = x³ * exp(-x) * cos(x) * sin(x) * (sin(x)² * cos(x) - 1)" + Environment.NewLine 35 35 + "range(train): x = [0:0.05:10]" + Environment.NewLine 36 36 + "range(test): x = [0.05:0.05:10.05]" + Environment.NewLine -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionFourteen.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunctionF ifteen : ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionFourteen : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 1 5 f(x, y) = 8 / (2 + x^2 + y^2)"; } }29 public override string Name { get { return "Keijzer 14 f(x, y) = 8 / (2 + x² + y²)"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 33 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x, y) = 8 / (2 + x ^2 + y^2)" + Environment.NewLine34 + "Function: f(x, y) = 8 / (2 + x² + y²)" + Environment.NewLine 35 35 + "range(train): 20 Train cases x,y = rnd(-3, 3)" + Environment.NewLine 36 36 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 37 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the inter cal [-3, 3] (not ca. 360000 as described) "38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the interval [-3, 3] (not ca. 360000 as described) " 39 39 + ", but 5000 cases are created"; 40 40 } … … 46 46 protected override int TrainingPartitionEnd { get { return 20; } } 47 47 protected override int TestPartitionStart { get { return 2500; } } 48 protected override int TestPartitionEnd { get { return 5000; } }48 protected override int TestPartitionEnd { get { return 2600; } } 49 49 50 50 protected override List<List<double>> GenerateValues() { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionNine.cs
r8226 r8238 27 27 public class KeijzerFunctionNine : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 9 f(x) = sqrt(x)"; } }29 public override string Name { get { return "Keijzer 9 f(x) = arcsinh(x) i.e. ln(x + sqrt(x² + 1))"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 33 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x) = sqrt(x)" + Environment.NewLine34 + "Function: f(x) = arcsinh(x) i.e. ln(x + sqrt(x² + 1))" + Environment.NewLine 35 35 + "range(train): x = [0:1:100]" + Environment.NewLine 36 36 + "range(test): x = [0:0.1:100]" + Environment.NewLine … … 42 42 protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 protected override int TrainingPartitionEnd { get { return 10 1; } }45 protected override int TestPartitionStart { get { return 10 1; } }46 protected override int TestPartitionEnd { get { return 110 2; } }44 protected override int TrainingPartitionEnd { get { return 100; } } 45 protected override int TestPartitionStart { get { return 100; } } 46 protected override int TestPartitionEnd { get { return 1100; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { … … 55 55 for (int i = 0; i < data[0].Count; i++) { 56 56 x = data[0][i]; 57 results.Add(Math. Sqrt(x));57 results.Add(Math.Log(x + Math.Sqrt(x*x + 1))); 58 58 } 59 59 data.Add(results); -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionOne.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunction Four: ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionOne : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 4f(x) = 0.3 * x *sin(2 * PI * x)"; } }29 public override string Name { get { return "Keijzer 1 f(x) = 0.3 * x *sin(2 * PI * x)"; } } 30 30 public override string Description { 31 31 get { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionSeven.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunction Eight: ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionSeven : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 8 f(x) = log(x)"; } }29 public override string Name { get { return "Keijzer 7 f(x) = ln(x)"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 33 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x) = l og(x)" + Environment.NewLine35 + "range(train): x = [ 0:1:100]" + Environment.NewLine36 + "range(test): x = [ 0:0.1:100]" + Environment.NewLine34 + "Function: f(x) = ln(x)" + Environment.NewLine 35 + "range(train): x = [1:1:100]" + Environment.NewLine 36 + "range(test): x = [1:0.1:100]" + Environment.NewLine 37 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 38 + "Note: The problem starts with 1 to avoid log(0), which is minus infinity!"; -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionSix.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunctionS even: ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionSix : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 7f(x) = Sum(1 / i) From 1 to X"; } }29 public override string Name { get { return "Keijzer 6 f(x) = Sum(1 / i) From 1 to X"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 33 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x) = (30 * x * y) / ((x - 10) * y^2)" + Environment.NewLine34 + "Function: f(x) = Sum(1 / i) From 1 to X" + Environment.NewLine 35 35 + "range(train): x = [1:1:50]" + Environment.NewLine 36 36 + "range(test): x = [1:1:120]" + Environment.NewLine -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionTen.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunction Eleven : ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionTen : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 1 1f(x, y) = x ^ y"; } }29 public override string Name { get { return "Keijzer 10 f(x, y) = x ^ y"; } } 30 30 public override string Description { 31 31 get { … … 44 44 protected override int TrainingPartitionEnd { get { return 100; } } 45 45 protected override int TestPartitionStart { get { return 100; } } 46 protected override int TestPartitionEnd { get { return 10 301; } }46 protected override int TestPartitionEnd { get { return 10100; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionThirteen.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunction Fourteen : ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionThirteen : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 1 4f(x, y) = 6 * sin(x) * cos(y)"; } }29 public override string Name { get { return "Keijzer 13 f(x, y) = 6 * sin(x) * cos(y)"; } } 30 30 public override string Description { 31 31 get { … … 36 36 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 37 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the inter cal [-3, 3] (not ca. 360000 as described) "38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the interval [-3, 3] (not ca. 360000 as described) " 39 39 + ", but 5000 cases are created"; 40 40 } … … 46 46 protected override int TrainingPartitionEnd { get { return 20; } } 47 47 protected override int TestPartitionStart { get { return 2500; } } 48 protected override int TestPartitionEnd { get { return 5000; } }48 protected override int TestPartitionEnd { get { return 2600; } } 49 49 50 50 protected override List<List<double>> GenerateValues() { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionThree.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunction Four: ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionThree : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 4f(x) = 0.3 * x *sin(2 * PI * x)"; } }29 public override string Name { get { return "Keijzer 3 f(x) = 0.3 * x *sin(2 * PI * x)"; } } 30 30 public override string Description { 31 31 get { … … 33 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 34 + "Function: f(x) = 0.3 * x *sin(2 * PI * x)" + Environment.NewLine 35 + "range(train): x = [- 1:0.1:1]" + Environment.NewLine36 + "range(test): x = [- 1:0.001:1]" + Environment.NewLine35 + "range(train): x = [-3:0.1:3]" + Environment.NewLine 36 + "range(test): x = [-3:0.001:3]" + Environment.NewLine 37 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)"; 38 38 } … … 42 42 protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 protected override int TrainingPartitionEnd { get { return 21; } }45 protected override int TestPartitionStart { get { return 21; } }46 protected override int TestPartitionEnd { get { return 2022; } }44 protected override int TrainingPartitionEnd { get { return 61; } } 45 protected override int TestPartitionStart { get { return 61; } } 46 protected override int TestPartitionEnd { get { return 6062; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateSteps(- 1, 1, 0.1).ToList());51 data[0].AddRange(ValueGenerator.GenerateSteps(- 1, 1, 0.001));50 data.Add(ValueGenerator.GenerateSteps(-3, 3, 0.1).ToList()); 51 data[0].AddRange(ValueGenerator.GenerateSteps(-3, 3, 0.001)); 52 52 53 53 double x; -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionTwelve.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunctionT hirteen: ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionTwelve : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 1 3 f(x, y) = x^4 - x^3 + y^2/ 2 - y"; } }29 public override string Name { get { return "Keijzer 12 f(x, y) = x^4 - x³ + y² / 2 - y"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 33 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x, y) = x^4 - x ^3 + y^2/ 2 - y" + Environment.NewLine34 + "Function: f(x, y) = x^4 - x³ + y² / 2 - y" + Environment.NewLine 35 35 + "range(train): 20 Training cases x,y = rnd(-3, 3)" + Environment.NewLine 36 36 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 37 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the inter cal [-3, 3] (not ca. 360000 as described) "38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the interval [-3, 3] (not ca. 360000 as described) " 39 39 + ", but 5000 cases are created"; 40 40 } … … 46 46 protected override int TrainingPartitionEnd { get { return 20; } } 47 47 protected override int TestPartitionStart { get { return 2500; } } 48 protected override int TestPartitionEnd { get { return 5000; } }48 protected override int TestPartitionEnd { get { return 2600; } } 49 49 50 50 protected override List<List<double>> GenerateValues() { -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionTwo.cs
r8226 r8238 25 25 26 26 namespace HeuristicLab.Problems.Instances.DataAnalysis { 27 public class KeijzerFunction Four: ArtificialRegressionDataDescriptor {27 public class KeijzerFunctionTwo : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Keijzer 4f(x) = 0.3 * x *sin(2 * PI * x)"; } }29 public override string Name { get { return "Keijzer 2 f(x) = 0.3 * x *sin(2 * PI * x)"; } } 30 30 public override string Description { 31 31 get { … … 33 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 34 + "Function: f(x) = 0.3 * x *sin(2 * PI * x)" + Environment.NewLine 35 + "range(train): x = [- 1:0.1:1]" + Environment.NewLine36 + "range(test): x = [- 1:0.001:1]" + Environment.NewLine35 + "range(train): x = [-2:0.1:2]" + Environment.NewLine 36 + "range(test): x = [-2:0.001:2]" + Environment.NewLine 37 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)"; 38 38 } … … 42 42 protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 protected override int TrainingPartitionEnd { get { return 21; } }45 protected override int TestPartitionStart { get { return 21; } }46 protected override int TestPartitionEnd { get { return 2022; } }44 protected override int TrainingPartitionEnd { get { return 41; } } 45 protected override int TestPartitionStart { get { return 41; } } 46 protected override int TestPartitionEnd { get { return 4042; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateSteps(- 1, 1, 0.1).ToList());51 data[0].AddRange(ValueGenerator.GenerateSteps(- 1, 1, 0.001));50 data.Add(ValueGenerator.GenerateSteps(-2, 2, 0.1).ToList()); 51 data[0].AddRange(ValueGenerator.GenerateSteps(-2, 2, 0.001)); 52 52 53 53 double x; -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerInstanceProvider.cs
r8224 r8238 40 40 public override IEnumerable<IDataDescriptor> GetDataDescriptors() { 41 41 List<IDataDescriptor> descriptorList = new List<IDataDescriptor>(); 42 descriptorList.Add(new KeijzerFunctionOne()); 43 descriptorList.Add(new KeijzerFunctionTwo()); 44 descriptorList.Add(new KeijzerFunctionThree()); 42 45 descriptorList.Add(new KeijzerFunctionFour()); 43 46 descriptorList.Add(new KeijzerFunctionFive()); … … 46 49 descriptorList.Add(new KeijzerFunctionEight()); 47 50 descriptorList.Add(new KeijzerFunctionNine()); 51 descriptorList.Add(new KeijzerFunctionTen()); 48 52 descriptorList.Add(new KeijzerFunctionEleven()); 49 53 descriptorList.Add(new KeijzerFunctionTwelve()); … … 51 55 descriptorList.Add(new KeijzerFunctionFourteen()); 52 56 descriptorList.Add(new KeijzerFunctionFifteen()); 53 descriptorList.Add(new KeijzerFunctionSixteen());54 57 return descriptorList; 55 58 }
Note: See TracChangeset
for help on using the changeset viewer.