- Timestamp:
- 07/05/12 09:44:06 (13 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression
- Files:
-
- 17 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerInstanceProvider.cs
r8210 r8224 35 35 } 36 36 public override string ReferencePublication { 37 get { return " "; }37 get { return "McDermott et al., 2012 \"Genetic Programming Needs Better Benchmarks\", in Proc. of GECCO 2012."; } 38 38 } 39 39 -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsInstanceProvider.cs
r8210 r8224 35 35 } 36 36 public override string ReferencePublication { 37 get { return " "; }37 get { return "McDermott et al., 2012 \"Genetic Programming Needs Better Benchmarks\", in Proc. of GECCO 2012."; } 38 38 } 39 39 -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionEight.cs
r7849 r8224 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 34 + "Function: F8 = Sqrt(x)" + Environment.NewLine 35 + "Fitcases: 20 random points ⊆[0, 4]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";35 + "Fitcases: 20 random points in [0, 4]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionEleven.cs
r7849 r8224 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 34 + "Function: F11 = x^y" + Environment.NewLine 35 + "Fitcases: 100 random points ⊆[0, 1]x[0, 1]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";35 + "Fitcases: 20 random points in [0, 1]x[0, 1]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } … … 42 42 protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 protected override int TrainingPartitionEnd { get { return 100; } }44 protected override int TrainingPartitionEnd { get { return 20; } } 45 45 protected override int TestPartitionStart { get { return 500; } } 46 46 protected override int TestPartitionEnd { get { return 1000; } } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionFive.cs
r7849 r8224 27 27 public class NguyenFunctionFive : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Nguyen F5 = sin(x ^2)cos(x) - 1"; } }29 public override string Name { get { return "Nguyen F5 = sin(x²)cos(x) - 1"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression" + Environment.NewLine 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 + "Function: F5 = sin(x ^2)cos(x) - 1" + Environment.NewLine35 + "Fitcases: 20 random points ⊆[-1, 1]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";34 + "Function: F5 = sin(x²)cos(x) - 1" + Environment.NewLine 35 + "Fitcases: 20 random points in [-1, 1]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionFour.cs
r7849 r8224 27 27 public class NguyenFunctionFour : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Nguyen F4 = x^6 + x^5 + x^4 + x ^3 + x^2+ x"; } }29 public override string Name { get { return "Nguyen F4 = x^6 + x^5 + x^4 + x³ + x² + x"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression" + Environment.NewLine 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 + "Function: F4 = x^6 + x^5 + x^4 + x ^3 + x^2+ x" + Environment.NewLine35 + "Fitcases: 20 random points ⊆[-1, 1]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";34 + "Function: F4 = x^6 + x^5 + x^4 + x³ + x² + x" + Environment.NewLine 35 + "Fitcases: 20 random points in [-1, 1]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionNine.cs
r7849 r8224 27 27 public class NguyenFunctionNine : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Nguyen F9 = sin(x) + sin(y ^2)"; } }29 public override string Name { get { return "Nguyen F9 = sin(x) + sin(y²)"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression" + Environment.NewLine 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 + "Function: F9 = sin(x) + sin(y ^2)" + Environment.NewLine35 + "Fitcases: 100 random points ⊆[0, 1]x[0, 1]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";34 + "Function: F9 = sin(x) + sin(y²)" + Environment.NewLine 35 + "Fitcases: 20 random points in [0, 1]x[0, 1]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } … … 42 42 protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 protected override int TrainingPartitionEnd { get { return 100; } }44 protected override int TrainingPartitionEnd { get { return 20; } } 45 45 protected override int TestPartitionStart { get { return 500; } } 46 46 protected override int TestPartitionEnd { get { return 1000; } } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionOne.cs
r7849 r8224 27 27 public class NguyenFunctionOne : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Nguyen F1 = x ^3 + x^2+ x"; } }29 public override string Name { get { return "Nguyen F1 = x³ + x² + x"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression" + Environment.NewLine 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 + "Function: F1 = x ^3 + x^2+ x" + Environment.NewLine35 + "Fitcases: 20 random points ⊆[-1, 1]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";34 + "Function: F1 = x³ + x² + x" + Environment.NewLine 35 + "Fitcases: 20 random points in [-1, 1]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionSeven.cs
r7849 r8224 27 27 public class NguyenFunctionSeven : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Nguyen F7 = log(x + 1) + log(x ^2+ 1)"; } }29 public override string Name { get { return "Nguyen F7 = log(x + 1) + log(x² + 1)"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression" + Environment.NewLine 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 + "Function: F7 = l og(x + 1) + log(x^2+ 1)" + Environment.NewLine35 + "Fitcases: 20 random points ⊆[0, 2]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";34 + "Function: F7 = ln(x + 1) + ln(x² + 1)" + Environment.NewLine 35 + "Fitcases: 20 random points in [0, 2]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionSix.cs
r7849 r8224 27 27 public class NguyenFunctionSix : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Nguyen F6 = sin(x) + sin(x + x ^2)"; } }29 public override string Name { get { return "Nguyen F6 = sin(x) + sin(x + x²)"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression" + Environment.NewLine 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 + "Function: F6 = sin(x) + sin(x + x ^2)" + Environment.NewLine35 + "Fitcases: 20 random points ⊆[-1, 1]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";34 + "Function: F6 = sin(x) + sin(x + x²)" + Environment.NewLine 35 + "Fitcases: 20 random points in [-1, 1]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionTen.cs
r7849 r8224 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 34 + "Function: F10 = 2sin(x)cos(y)" + Environment.NewLine 35 + "Fitcases: 100 random points ⊆[0, 1]x[0, 1]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";35 + "Fitcases: 20 random points in [0, 1]x[0, 1]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } … … 42 42 protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 protected override int TrainingPartitionEnd { get { return 100; } }44 protected override int TrainingPartitionEnd { get { return 20; } } 45 45 protected override int TestPartitionStart { get { return 500; } } 46 46 protected override int TestPartitionEnd { get { return 1000; } } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionThree.cs
r7849 r8224 27 27 public class NguyenFunctionThree : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Nguyen F3 = x^5 + x^4 + x ^3 + x^2+ x"; } }29 public override string Name { get { return "Nguyen F3 = x^5 + x^4 + x³ + x² + x"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression" + Environment.NewLine 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 + "Function: F3 = x^5 + x^4 + x ^3 + x^2+ x" + Environment.NewLine35 + "Fitcases: 20 random points ⊆[-1, 1]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";34 + "Function: F3 = x^5 + x^4 + x³ + x² + x" + Environment.NewLine 35 + "Fitcases: 20 random points in [-1, 1]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionTwelve.cs
r7849 r8224 27 27 public class NguyenFunctionTwelve : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Nguyen F12 = x^4 - x ^3 + y^2/2 - y"; } }29 public override string Name { get { return "Nguyen F12 = x^4 - x³ + y²/2 - y"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression" + Environment.NewLine 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 + "Function: F12 = x^4 - x ^3 + y^2/2 - y" + Environment.NewLine35 + "Fitcases: 100 random points ⊆[0, 1]x[0, 1]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";34 + "Function: F12 = x^4 - x³ + y²/2 - y" + Environment.NewLine 35 + "Fitcases: 20 random points in [0, 1]x[0, 1]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } … … 42 42 protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 protected override int TrainingPartitionEnd { get { return 100; } }44 protected override int TrainingPartitionEnd { get { return 20; } } 45 45 protected override int TestPartitionStart { get { return 500; } } 46 46 protected override int TestPartitionEnd { get { return 1000; } } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionTwo.cs
r7849 r8224 27 27 public class NguyenFunctionTwo : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Nguyen F2 = x^4 + x ^3 + x^2+ x"; } }29 public override string Name { get { return "Nguyen F2 = x^4 + x³ + x² + x"; } } 30 30 public override string Description { 31 31 get { 32 32 return "Paper: Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression" + Environment.NewLine 33 33 + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine 34 + "Function: F2 = x^4 + x ^3 + x^2+ x" + Environment.NewLine35 + "Fitcases: 20 random points ⊆[-1, 1]" + Environment.NewLine36 + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine37 + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems";34 + "Function: F2 = x^4 + x³ + x² + x" + Environment.NewLine 35 + "Fitcases: 20 random points in [-1, 1]" + Environment.NewLine 36 + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine 37 + "Terminals: only variables (no random constants)"; 38 38 } 39 39 } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenInstanceProvider.cs
r8210 r8224 35 35 } 36 36 public override string ReferencePublication { 37 get { return " "; }37 get { return "McDermott et al., 2012 \"Genetic Programming Needs Better Benchmarks\", in Proc. of GECCO 2012."; } 38 38 } 39 39 -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/ValueGenerator.cs
r7849 r8224 29 29 private static FastRandom rand = new FastRandom(); 30 30 31 /// <summary> 32 /// Generates a sequence of evenly spaced points between start and end (inclusive!). 33 /// </summary> 34 /// <param name="start">The smallest and first value of the sequence.</param> 35 /// <param name="end">The largest and last value of the sequence.</param> 36 /// <param name="stepWidth">The step size between subsequent values.</param> 37 /// <returns>An sequence of values from start to end (inclusive)</returns> 31 38 public static IEnumerable<double> GenerateSteps(double start, double end, double stepWidth) { 32 int steps = (int)Math.Round(((end - start) / stepWidth) + 1); 33 for (int i = 0; i < steps; i++) 34 yield return start + i * stepWidth; 39 if (start > end) throw new ArgumentException("start must be less than or equal end."); 40 if (stepWidth <= 0) throw new ArgumentException("stepwith must be larger than zero.", "stepWidth"); 41 double x = start; 42 while (x <= end) { 43 yield return x; 44 x += stepWidth; 45 } 35 46 } 36 47 37 public static IEnumerable<double> GenerateUniformDistributedValues(int amount, double start, double end) { 38 for (int i = 0; i < amount; i++) 39 yield return rand.NextDouble() * (end - start) + start; 48 /// <summary> 49 /// Generates uniformly distributed values between start and end (inclusive!) 50 /// </summary> 51 /// <param name="n">Number of values to generate.</param> 52 /// <param name="start">The lower value (inclusive)</param> 53 /// <param name="end">The upper value (inclusive)</param> 54 /// <returns>An enumerable including n values in [start, end]</returns> 55 public static IEnumerable<double> GenerateUniformDistributedValues(int n, double start, double end) { 56 for (int i = 0; i < n; i++) { 57 // we need to return a random value including end. 58 // so we cannot use rand.NextDouble() as it returns a value strictly smaller than 1. 59 double r = rand.NextUInt() / (double)uint.MaxValue; // r \in [0,1] 60 yield return r * (end - start) + start; 61 } 40 62 } 41 63 42 public static IEnumerable<double> GenerateNormalDistributedValues(int amount, double mu, double sigma) { 43 for (int i = 0; i < amount; i++) 64 /// <summary> 65 /// Generates normally distributed values sampling from N(mu, sigma) 66 /// </summary> 67 /// <param name="n">Number of values to generate.</param> 68 /// <param name="mu">The mu parameter of the normal distribution</param> 69 /// <param name="sigma">The sigma parameter of the normal distribution</param> 70 /// <returns>An enumerable including n values ~ N(mu, sigma)</returns> 71 public static IEnumerable<double> GenerateNormalDistributedValues(int n, double mu, double sigma) { 72 for (int i = 0; i < n; i++) 44 73 yield return NormalDistributedRandom.NextDouble(rand, mu, sigma); 45 74 } … … 82 111 } 83 112 } 84 85 //recursive approach86 /*public static IEnumerable<IEnumerable<double>> GenerateAllCombinationsOfValuesInLists(List<List<double>> lists) {87 int cur = 0;88 List<double> curCombination = new List<double>();89 List<List<double>> allCombinations = new List<List<double>>();90 for (int i = 0; i < lists.Count; i++) {91 allCombinations.Add(new List<double>());92 }93 if (lists.Count() > cur) {94 foreach (var item in lists[cur]) {95 curCombination.Clear();96 curCombination.Add(item);97 GetCombination(lists, cur + 1, curCombination, allCombinations);98 }99 }100 return allCombinations;101 }102 103 private static void GetCombination(List<List<double>> lists, int cur, List<double> curCombinations, List<List<double>> allCombinations) {104 if (lists.Count > cur) {105 foreach (var item in lists[cur]) {106 if (curCombinations.Count > cur) {107 curCombinations.RemoveAt(cur);108 }109 curCombinations.Add(item);110 GetCombination(lists, cur + 1, curCombinations, allCombinations);111 }112 } else {113 for (int i = 0; i < curCombinations.Count; i++) {114 allCombinations[i].Add(curCombinations[i]);115 }116 }117 } */118 119 //original120 /*public static IEnumerable<IEnumerable<double>> GenerateAllCombinationsOfValuesInLists(List<List<double>> sets) {121 122 var combinations = new List<List<double>>();123 124 foreach (var value in sets[0])125 combinations.Add(new List<double> { value });126 127 foreach (var set in sets.Skip(1))128 combinations = AddListToCombinations(combinations, set);129 130 IEnumerable<IEnumerable<double>> res = (from i in Enumerable.Range(0, sets.Count)131 select (from list in combinations132 select list.ElementAt(i)));133 134 return res;135 }136 137 private static List<List<double>> AddListToCombinations138 (List<List<double>> combinations, List<double> set) {139 var newCombinations = from value in set140 from combination in combinations141 select new List<double>(combination) { value };142 143 return newCombinations.ToList();144 } */145 113 } 146 114 } -
trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/VladislavlevaInstanceProvider.cs
r8210 r8224 35 35 } 36 36 public override string ReferencePublication { 37 get { return " "; }37 get { return "McDermott et al., 2012 \"Genetic Programming Needs Better Benchmarks\", in Proc. of GECCO 2012."; } 38 38 } 39 39
Note: See TracChangeset
for help on using the changeset viewer.