- Timestamp:
- 07/04/12 16:23:35 (13 years ago)
- Location:
- branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/ReplaceBranchMoveEvaluator.cs
r8207 r8214 20 20 #endregion 21 21 22 using System; 22 23 using System.Linq; 23 24 using HeuristicLab.Common; … … 86 87 OnlineLinearScalingParameterCalculator.Calculate(move.NewOutput, move.OriginalOutput, out alpha, out beta, out errorState); 87 88 89 // prevent scaling to a constant value 90 if (beta.IsAlmost(0.0)) beta = 10E-5; 91 88 92 move.Alpha = alpha; 89 93 move.Beta = beta; 90 94 91 // clone tree and parent 92 var cloner = new Cloner(); 93 var clonedTree = cloner.Clone(move.Tree); 94 var clonedParent = cloner.Clone(move.Parent); 95 var clonedBranch = cloner.Clone(move.NewBranch); 96 97 clonedParent.RemoveSubtree(move.SubtreeIndex); 98 clonedParent.InsertSubtree(move.SubtreeIndex, Scale(clonedBranch, alpha, beta)); 95 var oldBranch = move.Parent.GetSubtree(move.SubtreeIndex); 96 move.Parent.RemoveSubtree(move.SubtreeIndex); 97 move.Parent.InsertSubtree(move.SubtreeIndex, Scale(move.NewBranch, alpha, beta)); 99 98 100 99 var problemData = ProblemDataParameter.ActualValue; … … 103 102 var fitnessPartition = FitnessCalculationPartitionParameter.ActualValue; 104 103 var rows = Enumerable.Range(fitnessPartition.Start, fitnessPartition.End - fitnessPartition.Start); 105 var quality = evaluator.Evaluate(childContext, clonedTree, problemData, rows); 104 var quality = evaluator.Evaluate(childContext, move.Tree, problemData, rows); 105 106 // revert changes to tree 107 move.Parent.RemoveSubtree(move.SubtreeIndex); 108 move.Parent.InsertSubtree(move.SubtreeIndex, oldBranch); 106 109 107 110 MoveQualityParameter.ActualValue = new DoubleValue(quality); -
branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/ReplaceBranchMoveMaker.cs
r8207 r8214 86 86 87 87 private ISymbolicExpressionTreeNode Scale(ISymbolicExpressionTreeNode node, double alpha, double beta) { 88 var constAlpha = (ConstantTreeNode)constant.CreateTreeNode(); 89 var constBeta = (ConstantTreeNode)constant.CreateTreeNode(); 90 constAlpha.Value = alpha; 91 constBeta.Value = beta; 92 var sum = add.CreateTreeNode(); 93 var prod = mul.CreateTreeNode(); 94 prod.AddSubtree(node); prod.AddSubtree(constBeta); 95 sum.AddSubtree(prod); sum.AddSubtree(constAlpha); 96 return sum; 88 var constNode = node as ConstantTreeNode; 89 if (constNode != null) { 90 constNode.Value = constNode.Value * beta + alpha; 91 return constNode; 92 } 93 var varNode = node as VariableTreeNode; 94 if (varNode != null) { 95 varNode.Weight = varNode.Weight * beta; 96 var constAlpha = (ConstantTreeNode)constant.CreateTreeNode(); 97 constAlpha.Value = alpha; 98 var sum = add.CreateTreeNode(); 99 sum.AddSubtree(varNode); sum.AddSubtree(constAlpha); 100 return sum; 101 } 102 if (node.Symbol is Addition && node.GetSubtree(0).Symbol is Multiplication && 103 node.GetSubtree(1).Symbol is Constant && node.GetSubtree(0).GetSubtree(1).Symbol is Constant) { 104 var constAlpha = node.GetSubtree(1) as ConstantTreeNode; 105 var constBeta = node.GetSubtree(0).GetSubtree(1) as ConstantTreeNode; 106 constAlpha.Value = beta * constAlpha.Value + alpha; 107 constBeta.Value = constBeta.Value * beta; 108 return node; 109 } else { 110 var constAlpha = (ConstantTreeNode)constant.CreateTreeNode(); 111 var constBeta = (ConstantTreeNode)constant.CreateTreeNode(); 112 constAlpha.Value = alpha; 113 constBeta.Value = beta; 114 var sum = add.CreateTreeNode(); 115 var prod = mul.CreateTreeNode(); 116 prod.AddSubtree(node); 117 prod.AddSubtree(constBeta); 118 sum.AddSubtree(prod); 119 sum.AddSubtree(constAlpha); 120 return sum; 121 } 97 122 } 98 123 } -
branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/ReplaceBranchMoveSoftTabuCriterion.cs
r8206 r8214 109 109 || maximization && moveQuality <= absTabuAttribute.MoveQuality 110 110 || !maximization && moveQuality >= absTabuAttribute.MoveQuality) { 111 if (absTabuAttribute != null && absTabuAttribute.Path.Length == path.Count) {111 if (absTabuAttribute.Path.Length == path.Count) { 112 112 isTabu = true; 113 113 for (int j = 0; j < path.Count; j++) { … … 116 116 break; 117 117 } 118 } 119 if (isTabu) { 120 // check correlations 121 // R(prev, next) 122 // R(current, next) 123 // tabu = R(prev,next) > R(current,next) 124 // == the new move would be closer to the original than the previous move 125 OnlineCalculatorError error; 126 double rPrevNext = OnlinePearsonsRSquaredCalculator.Calculate(absTabuAttribute.PreviousOutput, move.NewOutput, out error); 127 if (error != OnlineCalculatorError.None) rPrevNext = 0.0; 128 double rCurrentNext = OnlinePearsonsRSquaredCalculator.Calculate(absTabuAttribute.PreviousOutput, move.OriginalOutput, 129 out error); 130 if (error != OnlineCalculatorError.None) rCurrentNext = 0.0; 131 isTabu = rPrevNext >= rCurrentNext; 118 132 } 119 133 } -
branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/ReplaceBranchMoveTabuMaker.cs
r8206 r8214 55 55 var move = ReplaceBranchMoveParameter.ActualValue; 56 56 var tree = SymbolicExpressionTreeParameter.ActualValue; 57 double baseQuality= moveQuality;58 if (maximization && quality > moveQuality || !maximization && quality < moveQuality) baseQuality = quality; // we make an uphill move, the lower bound is the solution quality57 double aspirationThreshold = moveQuality; 58 if (maximization && quality > moveQuality || !maximization && quality < moveQuality) aspirationThreshold = quality; // if we make a bad move, the aspriation threshold is the solution quality 59 59 60 60 List<int> path = new List<int>(); … … 68 68 } 69 69 path.Reverse(); 70 return new ChangeNodeTypeMoveAbsoluteAttribute(path.ToArray(), baseQuality);70 return new ChangeNodeTypeMoveAbsoluteAttribute(path.ToArray(), aspirationThreshold, move.OriginalOutput, move.NewOutput); 71 71 } 72 72 } -
branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/ReplaceBranchMultiMoveGenerator.cs
r8207 r8214 36 36 [StorableClass] 37 37 public class ReplaceBranchMultiMoveGenerator : SingleSuccessorOperator, IStochasticOperator, ISymbolicExpressionTreeMoveOperator, IMultiMoveGenerator, 38 ISymbolicDataAnalysisInterpreterOperator, ISymbolicExpressionTreeGrammarBasedOperator {38 ISymbolicDataAnalysisInterpreterOperator, ISymbolicExpressionTreeGrammarBasedOperator, ISymbolicExpressionTreeSizeConstraintOperator { 39 39 public ILookupParameter<IRandom> RandomParameter { 40 40 get { return (ILookupParameter<IRandom>)Parameters["Random"]; } … … 53 53 get { return (ILookupParameter<IRegressionProblemData>)Parameters["ProblemData"]; } 54 54 } 55 56 55 public IntValue SampleSize { 57 56 get { return SampleSizeParameter.Value; } … … 81 80 } 82 81 83 private IList<ISymbolicExpressionTree> trees; 84 private IList<double[]> treeOutput; 82 public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter { 83 get { return (IValueLookupParameter<IntValue>)Parameters["MaximumSymbolicExpressionTreeDepth"]; } 84 } 85 86 public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter { 87 get { return (IValueLookupParameter<IntValue>)Parameters["MaximumSymbolicExpressionTreeLength"]; } 88 } 89 90 public IValueLookupParameter<IntValue> NeighbourhoodSizeParameter { 91 get { return (IValueLookupParameter<IntValue>)Parameters["NeighbourhoodSize"]; } 92 } 93 94 95 private IList<ISymbolicExpressionTree> fragments; 96 private IList<double[]> fragmentOutput; 85 97 86 98 [StorableConstructor] … … 101 113 Parameters.Add(new ValueParameter<IntValue>("MaxReplacementBranchLength", new IntValue(8))); 102 114 Parameters.Add(new ValueParameter<IntValue>("MaxReplacementBranchDepth", new IntValue(4))); 103 } 115 Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeDepth")); 116 Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeLength")); 117 Parameters.Add(new ValueLookupParameter<IntValue>("NeighbourhoodSize", new IntValue(5))); 118 } 119 120 121 [StorableHook(HookType.AfterDeserialization)] 122 private void AfterDeserialization() { 123 if (!Parameters.ContainsKey("MaximumSymbolicExpressionTreeDepth")) { 124 Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeDepth")); 125 Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeLength")); 126 } 127 if (!Parameters.ContainsKey("NeighbourhoodSize")) { 128 Parameters.Add(new ValueLookupParameter<IntValue>("NeighbourhoodSize", new IntValue(5))); 129 } 130 131 } 132 104 133 105 134 public override IDeepCloneable Clone(Cloner cloner) { … … 108 137 109 138 public override void ClearState() { 110 trees = null;111 treeOutput = null;139 fragments = null; 140 fragmentOutput = null; 112 141 base.ClearState(); 113 142 } 114 143 public override void InitializeState() { 115 trees = null;116 treeOutput = null;144 fragments = null; 145 fragmentOutput = null; 117 146 base.InitializeState(); 118 147 } … … 120 149 public override IOperation Apply() { 121 150 var random = RandomParameter.ActualValue; 122 if ( trees == null || treeOutput == null) {151 if (fragments == null || fragmentOutput == null) { 123 152 InitializeOperator(); 124 153 } … … 156 185 var rows = ProblemDataParameter.ActualValue.TrainingIndices; 157 186 187 int maxDepth = MaximumSymbolicExpressionTreeDepthParameter.ActualValue.Value; 188 int maxLength = MaximumSymbolicExpressionTreeLengthParameter.ActualValue.Value; 189 int neighbourhoodSize = NeighbourhoodSizeParameter.ActualValue.Value; 158 190 while (count < n) { 159 191 // select a random replacement point … … 164 196 start.RemoveSubtree(0); 165 197 166 var bestTrees = new SortedList<double, Tuple<ISymbolicExpressionTree, double[]>>(); 167 double bestSimilarity = 0; 198 var bestTrees = new SortedList<double, Tuple<ISymbolicExpressionTree, double[]>>(fragments.Count); 168 199 // iterate over the whole pool of branches for replacement 169 for (int i = 0; i < trees.Count; i++) {200 for (int i = 0; i < fragments.Count; i++) { 170 201 // if the branch is allowed in the selected point 171 if (tree.Root.Grammar.IsAllowedChildSymbol(selected.parent.Symbol, trees[i].Root.GetSubtree(0).GetSubtree(0).Symbol, selected.i)) { 172 OnlineCalculatorError error; 173 // calculate the similarity 174 double similarity = OnlinePearsonsRSquaredCalculator.Calculate(output, treeOutput[i], out error); 175 if (error != OnlineCalculatorError.None) similarity = 0.0; 176 202 if (tree.Length - selected.parent.GetSubtree(selected.i).GetLength() + fragments[i].Length <= maxLength + 2 && 203 tree.Root.GetBranchLevel(selected.parent) + fragments[i].Depth - 2 <= maxDepth + 2 && 204 tree.Root.Grammar.IsAllowedChildSymbol(selected.parent.Symbol, fragments[i].Root.GetSubtree(0).GetSubtree(0).Symbol, selected.i)) { 205 double similarity; 206 if (neighbourhoodSize > 0) { 207 OnlineCalculatorError error; 208 // calculate the similarity 209 similarity = OnlinePearsonsRSquaredCalculator.Calculate(output, fragmentOutput[i], out error); 210 if (error != OnlineCalculatorError.None) similarity = 0.0; 211 } else { 212 // neighbourhoodSize = 0 => similarity is not considered 213 similarity = 0.0; 214 } 177 215 // if we found a new bestSimilarity then keep the replacement branch in a sorted list (keep maximally the 30 best for this replacement point) 178 if (similarity > bestSimilarity && !similarity.IsAlmost(1.0)) { 179 bestSimilarity = similarity; 180 bestTrees.Add(similarity, Tuple.Create(trees[i], treeOutput[i])); 181 if (bestTrees.Count > 30) 216 if (!similarity.IsAlmost(1.0)) { 217 bestTrees.Add(similarity + random.NextDouble() * 1E-6, Tuple.Create(fragments[i], fragmentOutput[i])); 218 if (neighbourhoodSize > 0 && bestTrees.Count > neighbourhoodSize) 182 219 bestTrees.RemoveAt(0); // remove moves with small R² at the beginning 183 220 else if (neighbourhoodSize == 0 && bestTrees.Count > 1) { 221 bestTrees.RemoveAt(bestTrees.Count - 1); // remove the last tree => only a random fragment is kept 222 } 184 223 } 185 224 } 186 }187 // did not find a move better than similarity 0.0 => create a move to replace it with a random branch188 // this is necessary to make it possible to replace branches that evaluate to NaN or infinity189 if (bestTrees.Count == 0) {190 int r = random.Next(trees.Count);191 bestTrees.Add(0.0, Tuple.Create(trees[r], treeOutput[r]));192 225 } 193 226 // yield moves (we need to add linear scaling parameters for the inserted tree) … … 215 248 // create pool of random branches for replacement (no constants) 216 249 // and evaluate the output 217 // only keep trees if the output does not contain invalid values250 // only keep fragments if the output does not contain invalid values 218 251 var n = ReplacementBranchesPoolSize.Value.Value; 219 252 while (trees.Count < n) { … … 227 260 // enable constants again 228 261 constSym.InitialFrequency = oldConstFreq; 229 this.trees = trees; 230 this.treeOutput = treeOutput; 231 } 232 262 this.fragments = trees; 263 this.fragmentOutput = treeOutput; 264 } 233 265 } 234 266 }
Note: See TracChangeset
for help on using the changeset viewer.