Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
07/03/12 16:46:35 (13 years ago)
Author:
gkronber
Message:

#1847: merged r8084:8205 from trunk into GP move operators branch

Location:
branches/GP-MoveOperators
Files:
8 edited

Legend:

Unmodified
Added
Removed
  • branches/GP-MoveOperators

  • branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionErrorCharacteristicsCurveView.Designer.cs

    r8085 r8206  
    3636      //
    3737      this.chart.Anchor = ((System.Windows.Forms.AnchorStyles)((((System.Windows.Forms.AnchorStyles.Top | System.Windows.Forms.AnchorStyles.Bottom)
    38             | System.Windows.Forms.AnchorStyles.Left)
    39             | System.Windows.Forms.AnchorStyles.Right)));
     38                  | System.Windows.Forms.AnchorStyles.Left)
     39                  | System.Windows.Forms.AnchorStyles.Right)));
    4040      chartArea1.Name = "ChartArea1";
    4141      this.chart.ChartAreas.Add(chartArea1);
     
    7373      // RegressionSolutionErrorCharacteristicsCurveView
    7474      //
    75       this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
    7675      this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Inherit;
    7776      this.Controls.Add(this.label1);
  • branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionErrorCharacteristicsCurveView.cs

    r7701 r8206  
    2626using System.Windows.Forms.DataVisualization.Charting;
    2727using HeuristicLab.MainForm;
    28 using HeuristicLab.MainForm.WindowsForms;
    2928
    3029namespace HeuristicLab.Problems.DataAnalysis.Views {
     
    3231  [Content(typeof(IRegressionSolution))]
    3332  public partial class RegressionSolutionErrorCharacteristicsCurveView : DataAnalysisSolutionEvaluationView {
    34     private IRegressionSolution constantModel;
    3533    protected const string TrainingSamples = "Training";
    3634    protected const string TestSamples = "Test";
     
    103101      if (Content == null) return;
    104102
     103      var constantModel = CreateConstantModel();
    105104      var originalValues = GetOriginalValues().ToList();
    106       constantModel = CreateConstantModel();
    107105      var baselineEstimatedValues = GetEstimatedValues(constantModel);
    108106      var baselineResiduals = GetResiduals(originalValues, baselineEstimatedValues);
     
    117115      baselineSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(baselineSeries);
    118116      baselineSeries.Tag = constantModel;
     117      baselineSeries.LegendToolTip = "Double-click to open model";
    119118      chart.Series.Add(baselineSeries);
    120119
     
    131130      UpdateSeries(estimatedValues, solutionSeries);
    132131      solutionSeries.ToolTip = "Area over Curve: " + CalculateAreaOverCurve(solutionSeries);
     132      solutionSeries.LegendToolTip = "Double-click to open model";
    133133      chart.Series.Add(solutionSeries);
    134134    }
     
    169169      switch (cmbSamples.SelectedItem.ToString()) {
    170170        case TrainingSamples:
    171           originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
     171          originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices);
    172172          break;
    173173        case TestSamples:
    174           originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
     174          originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices);
    175175          break;
    176176        case AllSamples:
     
    201201    }
    202202
    203     protected IEnumerable<double> GetbaselineEstimatedValues(IEnumerable<double> originalValues) {
    204       double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).Average();
    205       return Enumerable.Repeat(averageTrainingTarget, originalValues.Count());
    206     }
    207 
    208203    protected virtual List<double> GetResiduals(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues) {
    209204      return originalValues.Zip(estimatedValues, (x, y) => Math.Abs(x - y)).ToList();
     
    239234
    240235    private IRegressionSolution CreateConstantModel() {
    241       double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).Average();
     236      double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
    242237      var solution = new ConstantRegressionModel(averageTrainingTarget).CreateRegressionSolution(ProblemData);
    243238      solution.Name = "Baseline";
     
    248243    private void chart_MouseMove(object sender, MouseEventArgs e) {
    249244      HitTestResult result = chart.HitTest(e.X, e.Y);
    250       if (result.ChartElementType == ChartElementType.LegendItem)
     245      if (result.ChartElementType == ChartElementType.LegendItem) {
    251246        Cursor = Cursors.Hand;
    252       else
     247      } else {
    253248        Cursor = Cursors.Default;
     249      }
    254250    }
    255251  }
  • branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionEstimatedValuesView.cs

    r7259 r8206  
    9393          var estimated_test = Content.EstimatedTestValues.GetEnumerator();
    9494
    95           foreach (var row in Content.ProblemData.TrainingIndizes) {
     95          foreach (var row in Content.ProblemData.TrainingIndices) {
    9696            estimated_training.MoveNext();
    9797            values[row, 3] = estimated_training.Current.ToString();
    9898          }
    9999
    100           foreach (var row in Content.ProblemData.TestIndizes) {
     100          foreach (var row in Content.ProblemData.TestIndices) {
    101101            estimated_test.MoveNext();
    102102            values[row, 4] = estimated_test.Current.ToString();
  • branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionLineChartView.cs

    r7406 r8206  
    7272        this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].ChartType = SeriesChartType.FastLine;
    7373        this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].EmptyPointStyle.Color = this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Color;
    74         this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Points.DataBindXY(Content.ProblemData.TrainingIndizes.ToArray(), Content.EstimatedTrainingValues.ToArray());
     74        this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Points.DataBindXY(Content.ProblemData.TrainingIndices.ToArray(), Content.EstimatedTrainingValues.ToArray());
    7575        this.InsertEmptyPoints(this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME]);
    7676        this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Tag = Content;
     
    7979        this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].LegendText = ESTIMATEDVALUES_TEST_SERIES_NAME;
    8080        this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].ChartType = SeriesChartType.FastLine;
    81         this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].Points.DataBindXY(Content.ProblemData.TestIndizes.ToArray(), Content.EstimatedTestValues.ToArray());
     81        this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].Points.DataBindXY(Content.ProblemData.TestIndices.ToArray(), Content.EstimatedTestValues.ToArray());
    8282        this.InsertEmptyPoints(this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME]);
    8383        this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].Tag = Content;
    8484        // series of remaining points
    85         int[] allIndizes = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).Except(Content.ProblemData.TrainingIndizes).Except(Content.ProblemData.TestIndizes).ToArray();
     85        int[] allIndices = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).Except(Content.ProblemData.TrainingIndices).Except(Content.ProblemData.TestIndices).ToArray();
    8686        var estimatedValues = Content.EstimatedValues.ToArray();
    87         List<double> allEstimatedValues = allIndizes.Select(index => estimatedValues[index]).ToList();
     87        List<double> allEstimatedValues = allIndices.Select(index => estimatedValues[index]).ToList();
    8888        this.chart.Series.Add(ESTIMATEDVALUES_ALL_SERIES_NAME);
    8989        this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].LegendText = ESTIMATEDVALUES_ALL_SERIES_NAME;
    9090        this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].ChartType = SeriesChartType.FastLine;
    91         this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].Points.DataBindXY(allIndizes, allEstimatedValues);
     91        this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].Points.DataBindXY(allIndices, allEstimatedValues);
    9292        this.InsertEmptyPoints(this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME]);
    9393        this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].Tag = Content;
     
    170170
    171171      int[] attr = new int[Content.ProblemData.Dataset.Rows + 1]; // add a virtual last row that is again empty to simplify loop further down
    172       foreach (var row in Content.ProblemData.TrainingIndizes) {
     172      foreach (var row in Content.ProblemData.TrainingIndices) {
    173173        attr[row] += 1;
    174174      }
    175       foreach (var row in Content.ProblemData.TestIndizes) {
     175      foreach (var row in Content.ProblemData.TestIndices) {
    176176        attr[row] += 2;
    177177      }
     
    223223        string targetVariableName = Content.ProblemData.TargetVariable;
    224224
    225         IEnumerable<int> indizes = null;
     225        IEnumerable<int> indices = null;
    226226        IEnumerable<double> predictedValues = null;
    227227        switch (series.Name) {
    228228          case ESTIMATEDVALUES_ALL_SERIES_NAME:
    229             indizes = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).Except(Content.ProblemData.TrainingIndizes).Except(Content.ProblemData.TestIndizes).ToArray();
     229            indices = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).Except(Content.ProblemData.TrainingIndices).Except(Content.ProblemData.TestIndices).ToArray();
    230230            var estimatedValues = Content.EstimatedValues.ToArray();
    231             predictedValues = indizes.Select(index => estimatedValues[index]).ToList();
     231            predictedValues = indices.Select(index => estimatedValues[index]).ToList();
    232232            break;
    233233          case ESTIMATEDVALUES_TRAINING_SERIES_NAME:
    234             indizes = Content.ProblemData.TrainingIndizes.ToArray();
     234            indices = Content.ProblemData.TrainingIndices.ToArray();
    235235            predictedValues = Content.EstimatedTrainingValues.ToArray();
    236236            break;
    237237          case ESTIMATEDVALUES_TEST_SERIES_NAME:
    238             indizes = Content.ProblemData.TestIndizes.ToArray();
     238            indices = Content.ProblemData.TestIndices.ToArray();
    239239            predictedValues = Content.EstimatedTestValues.ToArray();
    240240            break;
    241241        }
    242         series.Points.DataBindXY(indizes, predictedValues);
     242        series.Points.DataBindXY(indices, predictedValues);
    243243        this.InsertEmptyPoints(series);
    244244        chart.Legends[series.Legend].ForeColor = Color.Black;
  • branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionResidualHistogram.Designer.cs

    r8085 r8206  
    4141      this.chart.Location = new System.Drawing.Point(0, 0);
    4242      this.chart.Name = "chart";
    43       this.chart.Size = new System.Drawing.Size(358, 225);
     43      this.chart.Size = new System.Drawing.Size(289, 220);
    4444      this.chart.TabIndex = 0;
    4545      this.chart.CustomizeLegend += new System.EventHandler<System.Windows.Forms.DataVisualization.Charting.CustomizeLegendEventArgs>(this.chart_CustomizeLegend);
     
    5050      //
    5151      this.AllowDrop = true;
    52       this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
    5352      this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Inherit;
    5453      this.Controls.Add(this.chart);
  • branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionResidualHistogram.cs

    r7503 r8206  
    3939    protected const string TEST_SAMPLES = "Test samples";
    4040    /// <summary>
    41     /// used to reduce code duplication
    42     /// </summary>
    43     protected static string[] ALL_SERIES = new string[] { ALL_SAMPLES, TRAINING_SAMPLES, TEST_SAMPLES };
    44     /// <summary>
    4541    /// approximate amount of bins
    4642    /// </summary>
    4743    protected const double bins = 25;
    48     /// <summary>
    49     ///  keeps for all series a list for every bin with the position of the bin, the relative frequency of the
    50     ///  residuals and the beginning and the end of the interval of the bin
    51     ///  </summary>
    52     protected Dictionary<string, List<List<double>>> relativeFrequencies;
    5344    #endregion
    5445
     
    6152      : base() {
    6253      InitializeComponent();
    63       relativeFrequencies = new Dictionary<string, List<List<double>>>();
    64       foreach (string series in ALL_SERIES) {
     54      foreach (string series in new List<String>() { ALL_SAMPLES, TRAINING_SAMPLES, TEST_SAMPLES }) {
    6555        chart.Series.Add(series);
    6656        chart.Series[series].LegendText = series;
     
    7161        chart.Series[series].BorderColor = Color.Black;
    7262        chart.Series[series].ToolTip = series + " Y = #VALY from #CUSTOMPROPERTY(from) to #CUSTOMPROPERTY(to)";
    73         relativeFrequencies[series] = new List<List<double>>();
    7463      }
    7564      //configure axis
     
    8776
    8877    private void RedrawChart() {
    89       foreach (string series in ALL_SERIES) {
    90         chart.Series[series].Points.Clear();
    91         relativeFrequencies[series].Clear();
     78      foreach (Series series in chart.Series) {
     79        series.Points.Clear();
    9280      }
    9381      if (Content != null) {
    94         Dictionary<string, List<double>> residuals = CalculateResiduals();
    95         double realMax = Math.Max(Math.Abs(residuals[ALL_SAMPLES].Min()), Math.Abs(residuals[ALL_SAMPLES].Max()));
    96         double roundedMax = HumanRoundMax(realMax);
    97         double intervalWidth = (roundedMax * 2.0) / bins;
    98         intervalWidth = HumanRoundMax(intervalWidth);
    99         // sets roundedMax to a value, so that zero will be in the middle of the x axis
    100         double help = realMax / intervalWidth;
    101         help = help % 1 < 0.5 ? (int)help : (int)help + 1;
    102         roundedMax = help * intervalWidth;
    103 
    104         foreach (string series in ALL_SERIES) {
    105           CalculateFrequencies(residuals[series], series, roundedMax, intervalWidth);
    106           if (!series.Equals(ALL_SAMPLES))
    107             ShowValues(chart.Series[series], relativeFrequencies[series]);
     82        List<double> residuals = CalculateResiduals(Content);
     83
     84        double max = 0.0;
     85        foreach (Series series in chart.Series) {
     86          CalculateFrequencies(residuals, series);
     87          double seriesMax = series.Points.Select(p => p.YValues.First()).Max();
     88          max = max < seriesMax ? seriesMax : max;
    10889        }
     90
     91        // ALL_SAMPLES has to be calculated to know its highest frequency, but it is not shown in the beginning
     92        chart.Series.First(s => s.Name.Equals(ALL_SAMPLES)).Points.Clear();
     93
     94        double roundedMax, intervalWidth;
     95        CalculateResidualParameters(residuals, out roundedMax, out intervalWidth);
    10996
    11097        ChartArea chartArea = chart.ChartAreas[0];
     
    11299        chartArea.AxisX.Maximum = roundedMax + intervalWidth;
    113100        // get the highest frequency of a residual of any series
    114         chartArea.AxisY.Maximum = (from series in relativeFrequencies.Values
    115                                    select (from residual in series
    116                                            select residual.ElementAt(1)).Max()).Max();
     101        chartArea.AxisY.Maximum = max;
    117102        if (chartArea.AxisY.Maximum < 0.1) {
    118103          chartArea.AxisY.Interval = 0.01;
     
    132117    }
    133118
    134     private Dictionary<string, List<double>> CalculateResiduals() {
    135       Dictionary<string, List<double>> residuals = new Dictionary<string, List<double>>();
    136 
    137       foreach (string series in ALL_SERIES) {
    138         residuals[series] = new List<double>();
    139       }
     119    private List<double> CalculateResiduals(IRegressionSolution solution) {
     120      List<double> residuals = new List<double>();
     121
     122      IRegressionProblemData problemdata = solution.ProblemData;
     123      List<double> targetValues = problemdata.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToList();
     124      List<double> estimatedValues = solution.EstimatedValues.ToList();
     125
     126      for (int i = 0; i < solution.ProblemData.Dataset.Rows; i++) {
     127        double residual = estimatedValues[i] - targetValues[i];
     128        residuals.Add(residual);
     129      }
     130      return residuals;
     131    }
     132
     133    private void CalculateFrequencies(List<double> residualValues, Series series) {
     134      double roundedMax, intervalWidth;
     135      CalculateResidualParameters(residualValues, out roundedMax, out intervalWidth);
     136
     137      IEnumerable<double> relevantResiduals = residualValues;
    140138      IRegressionProblemData problemdata = Content.ProblemData;
    141       List<double> targetValues = problemdata.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToList();
    142       List<double> estimatedValues = Content.EstimatedValues.ToList();
    143 
    144       for (int i = 0; i < Content.ProblemData.Dataset.Rows; i++) {
    145         double residual = estimatedValues[i] - targetValues[i];
    146         residuals[ALL_SAMPLES].Add(residual);
    147         if (i >= problemdata.TrainingPartition.Start && i < problemdata.TrainingPartition.End)
    148           residuals[TRAINING_SAMPLES].Add(residual);
    149         if (i >= problemdata.TestPartition.Start && i < problemdata.TestPartition.End)
    150           residuals[TEST_SAMPLES].Add(residual);
    151       }
    152       return residuals;
    153     }
    154 
    155     private void CalculateFrequencies(List<double> residualValues, string series, double max, double intervalWidth) {
     139      if (series.Name.Equals(TRAINING_SAMPLES)) {
     140        relevantResiduals = residualValues.Skip(problemdata.TrainingPartition.Start).Take(problemdata.TrainingPartition.Size);
     141      } else if (series.Name.Equals(TEST_SAMPLES)) {
     142        relevantResiduals = residualValues.Skip(problemdata.TestPartition.Start).Take(problemdata.TestPartition.Size);
     143      }
     144
    156145      double intervalCenter = intervalWidth / 2.0;
    157       double sampleCount = residualValues.Count();
    158       double current = -max;
     146      double sampleCount = relevantResiduals.Count();
     147      double current = -roundedMax;
     148      DataPointCollection seriesPoints = series.Points;
    159149
    160150      for (int i = 0; i <= bins; i++) {
    161         IEnumerable<double> help = residualValues.Where(x => x >= (current - intervalCenter) && x < (current + intervalCenter));
    162         relativeFrequencies[series].Add(new List<double>() { current, help.Count() / sampleCount, current - intervalCenter, current + intervalCenter });
     151        IEnumerable<double> help = relevantResiduals.Where(x => x >= (current - intervalCenter) && x < (current + intervalCenter));
     152        seriesPoints.AddXY(current, help.Count() / sampleCount);
     153        seriesPoints[seriesPoints.Count - 1]["from"] = (current - intervalCenter).ToString();
     154        seriesPoints[seriesPoints.Count - 1]["to"] = (current + intervalCenter).ToString();
    163155        current += intervalWidth;
    164156      }
    165157    }
    166158
    167     private double HumanRoundMax(double max) {
     159    private void ToggleSeriesData(Series series) {
     160      if (series.Points.Count > 0) {  //checks if series is shown
     161        if (chart.Series.Any(s => s != series && s.Points.Count > 0)) {
     162          series.Points.Clear();
     163        }
     164      } else if (Content != null) {
     165        List<double> residuals = CalculateResiduals(Content);
     166        CalculateFrequencies(residuals, series);
     167        chart.Legends[series.Legend].ForeColor = Color.Black;
     168        chart.Refresh();
     169      }
     170    }
     171
     172    private static void CalculateResidualParameters(List<double> residuals, out double roundedMax, out double intervalWidth) {
     173      double realMax = Math.Max(Math.Abs(residuals.Min()), Math.Abs(residuals.Max()));
     174      roundedMax = HumanRoundMax(realMax);
     175      intervalWidth = (roundedMax * 2.0) / bins;
     176      intervalWidth = HumanRoundMax(intervalWidth);
     177      // sets roundedMax to a value, so that zero will be in the middle of the x axis
     178      double help = realMax / intervalWidth;
     179      help = help % 1 < 0.5 ? (int)help : (int)help + 1;
     180      roundedMax = help * intervalWidth;
     181    }
     182
     183    private static double HumanRoundMax(double max) {
    168184      double base10;
    169185      if (max > 0) base10 = Math.Pow(10.0, Math.Floor(Math.Log10(max)));
     
    216232    }
    217233    #endregion
    218 
    219     private void ToggleSeriesData(Series series) {
    220       if (series.Points.Count > 0) {  //checks if series is shown
    221         if (chart.Series.Any(s => s != series && s.Points.Count > 0)) {
    222           series.Points.Clear();
    223         }
    224       } else if (Content != null) {
    225         ShowValues(series, relativeFrequencies[series.Name]);
    226         chart.Legends[series.Legend].ForeColor = Color.Black;
    227         chart.Refresh();
    228       }
    229     }
    230     private void ShowValues(Series series, List<List<double>> relativeSeriesFrequencies) {
    231       DataPointCollection seriesPoints = series.Points;
    232 
    233       foreach (var valueList in relativeSeriesFrequencies) {
    234         seriesPoints.AddXY(valueList[0], valueList[1]);
    235         seriesPoints[seriesPoints.Count - 1]["from"] = valueList[2].ToString();
    236         seriesPoints[seriesPoints.Count - 1]["to"] = valueList[3].ToString();
    237       }
    238     }
    239234  }
    240235}
  • branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionScatterPlotView.cs

    r8085 r8206  
    148148        if (this.chart.Series[TRAINING_SERIES].Points.Count > 0)
    149149          this.chart.Series[TRAINING_SERIES].Points.DataBindXY(Content.EstimatedTrainingValues.ToArray(), "",
    150             dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TrainingIndizes).ToArray(), "");
     150            dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TrainingIndices).ToArray(), "");
    151151        if (this.chart.Series[TEST_SERIES].Points.Count > 0)
    152152          this.chart.Series[TEST_SERIES].Points.DataBindXY(Content.EstimatedTestValues.ToArray(), "",
    153            dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TestIndizes).ToArray(), "");
     153           dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TestIndices).ToArray(), "");
    154154
    155155        double max = Content.EstimatedTrainingValues.Concat(Content.EstimatedTestValues.Concat(Content.EstimatedValues.Concat(dataset.GetDoubleValues(targetVariableName)))).Max();
     
    196196          case TRAINING_SERIES:
    197197            predictedValues = Content.EstimatedTrainingValues.ToArray();
    198             targetValues = Content.ProblemData.Dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TrainingIndizes).ToArray();
     198            targetValues = Content.ProblemData.Dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TrainingIndices).ToArray();
    199199            break;
    200200          case TEST_SERIES:
    201201            predictedValues = Content.EstimatedTestValues.ToArray();
    202             targetValues = Content.ProblemData.Dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TestIndizes).ToArray();
     202            targetValues = Content.ProblemData.Dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TestIndices).ToArray();
    203203            break;
    204204        }
Note: See TracChangeset for help on using the changeset viewer.