- Timestamp:
- 05/14/12 17:22:56 (13 years ago)
- Location:
- branches/GeneralizedQAP
- Files:
-
- 11 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/GeneralizedQAP/Clean.cmd
r7807 r7813 5 5 FOR /F "tokens=*" %%G IN ('DIR /AD /B') DO ( 6 6 FOR /F "tokens=*" %%T IN ('DIR /AD /B %%G') DO ( 7 IF EXIST %%G\%%T\bin(7 IF EXIST "%%G\%%T\bin" ( 8 8 ECHO Cleaning "bin" in %%G in version %%T ... 9 9 RMDIR /S /Q "%%G\%%T\bin" 10 10 ) 11 IF EXIST %%G\%%T\obj(11 IF EXIST "%%G\%%T\obj" ( 12 12 ECHO Cleaning "obj" in %%G in version %%T ... 13 13 RMDIR /S /Q "%%G\%%T\obj" -
branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment.Common/3.3/ExtensionMethods.cs
r7807 r7813 20 20 #endregion 21 21 22 using System;23 22 using System.Collections.Generic; 24 23 using System.Linq; … … 27 26 namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment.Common { 28 27 public static class ExtensionMethods { 29 30 #region Choosing from a sequence31 /// <summary>32 /// Chooses one elements from a sequence giving each element an equal chance.33 /// </summary>34 /// <remarks>35 /// Runtime complexity is O(1) for sequences that are of type <see cref="IList{T}"/> and36 /// O(N) for all other.37 /// </remarks>38 /// <exception cref="ArgumentException">If the sequence is empty.</exception>39 /// <typeparam name="T">The type of the items to be selected.</typeparam>40 /// <param name="source">The sequence of elements.</param>41 /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>42 /// <param name="count">The number of items to be selected.</param>43 /// <returns>An element that has been chosen randomly from the sequence.</returns>44 public static T SampleRandom<T>(this IEnumerable<T> source, IRandom random) {45 if (!source.Any()) throw new ArgumentException("sequence is empty.", "source");46 return source.SampleRandom(random, 1).First();47 }48 /// <summary>49 /// Chooses <paramref name="count"/> elements from a sequence with repetition with equal chances for each element.50 /// </summary>51 /// <remarks>52 /// Runtime complexity is O(count) for sequences that are <see cref="IList{T}"/> and53 /// O(N * count) for all other. No exception is thrown if the sequence is empty.54 ///55 /// The method is online.56 /// </remarks>57 /// <typeparam name="T">The type of the items to be selected.</typeparam>58 /// <param name="source">The sequence of elements.</param>59 /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>60 /// <param name="count">The number of items to be selected.</param>61 /// <returns>A sequence of elements that have been chosen randomly.</returns>62 public static IEnumerable<T> SampleRandom<T>(this IEnumerable<T> source, IRandom random, int count) {63 var listSource = source as IList<T>;64 if (listSource != null) {65 while (count > 0) {66 yield return listSource[random.Next(listSource.Count)];67 count--;68 }69 } else {70 while (count > 0) {71 var enumerator = source.GetEnumerator();72 enumerator.MoveNext();73 T selectedItem = enumerator.Current;74 int counter = 1;75 while (enumerator.MoveNext()) {76 counter++;77 if (counter * random.NextDouble() < 1.0)78 selectedItem = enumerator.Current;79 }80 yield return selectedItem;81 count--;82 }83 }84 }85 /// <summary>86 /// Chooses <paramref name="count"/> elements from a sequence without repetition with equal chances for each element.87 /// The items are returned in the same order as they appear in the sequence.88 /// </summary>89 /// <remarks>90 /// Runtime complexity is O(N) for all sequences.91 /// No exception is thrown if the sequence contains less items than there are to be selected.92 ///93 /// The method is online.94 /// </remarks>95 /// <typeparam name="T">The type of the items to be selected.</typeparam>96 /// <param name="source">The sequence of elements.</param>97 /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>98 /// <param name="count">The number of items to be selected.</param>99 /// <returns>A sequence of elements that have been chosen randomly.</returns>100 public static IEnumerable<T> SampleRandomWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count) {101 int remaining = source.Count();102 foreach (var item in source) {103 if (random.NextDouble() * remaining < count) {104 count--;105 yield return item;106 if (count <= 0) break;107 }108 remaining--;109 }110 }111 112 /// <summary>113 /// Chooses elements out of a sequence with repetition. The chance that an item is selected is proportional or inverse-proportional114 /// to the <paramref name="weights"/>.115 /// </summary>116 /// <remarks>117 /// In case both <paramref name="inverseProportional"/> and <paramref name="windowing"/> are false values must be > 0,118 /// otherwise an InvalidOperationException is thrown.119 ///120 /// The method internally holds two arrays: One that is the sequence itself and another one for the values.121 /// </remarks>122 /// <typeparam name="T">The type of the items to be selected.</typeparam>123 /// <param name="source">The sequence of elements.</param>124 /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>125 /// <param name="count">The number of items to be selected.</param>126 /// <param name="weights">The weight values for the items.</param>127 /// <param name="windowing">Whether to scale the proportional values or not.</param>128 /// <param name="inverseProportional">Determines whether to choose proportionally (false) or inverse-proportionally (true).</param>129 /// <returns>A sequence of selected items. The sequence might contain the same item more than once.</returns>130 public static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, IRandom random, int count, IEnumerable<double> weights, bool windowing = true, bool inverseProportional = false) {131 return source.SampleProportional(random, weights, windowing, inverseProportional).Take(count);132 }133 /// <summary>134 /// Same as <seealso cref="SampleProportional<T>"/>, but chooses an item exactly once.135 /// </summary>136 /// <remarks>137 /// In case both <paramref name="inverseProportional"/> and <paramref name="windowing"/> are false values must be > 0,138 /// otherwise an InvalidOperationException is thrown.139 ///140 /// The method internally holds two arrays: One that is the sequence itself and another one for the values.141 /// </remarks>142 /// <typeparam name="T">The type of the items to be selected.</typeparam>143 /// <param name="source">The sequence of elements.</param>144 /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param>145 /// <param name="count">The number of items to be selected.</param>146 /// <param name="weights">The weight values for the items.</param>147 /// <param name="windowing">Whether to scale the proportional values or not.</param>148 /// <param name="maximization">Determines whether to choose proportionally (true) or inverse-proportionally (false).</param>149 /// <returns>A sequence of selected items.</returns>150 public static IEnumerable<T> SampleProportionalWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count, IEnumerable<double> weights, bool windowing = true, bool inverseProportional = false) {151 return source.SampleProportionalWithoutRepetition(random, weights, windowing, inverseProportional).Take(count);152 }153 #region Proportional Helpers154 private static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, IRandom random, IEnumerable<double> weights, bool windowing, bool inverseProportional) {155 var sourceArray = source.ToArray();156 var valueArray = PrepareProportional<T>(sourceArray, weights, windowing, inverseProportional);157 double total = valueArray.Sum();158 159 while (true) {160 int index = 0;161 double ball = valueArray[index], sum = random.NextDouble() * total;162 while (ball < sum)163 ball += valueArray[++index];164 yield return sourceArray[index];165 }166 }167 private static IEnumerable<T> SampleProportionalWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, IEnumerable<double> weights, bool windowing, bool inverseProportional) {168 var sourceArray = source.ToArray();169 var valueArray = PrepareProportional<T>(sourceArray, weights, windowing, inverseProportional);170 double total = valueArray.Sum();171 172 HashSet<int> chosenIndices = new HashSet<int>();173 while (chosenIndices.Count < sourceArray.Length) {174 int index = 0;175 double ball = valueArray[index], sum = random.NextDouble() * total;176 while (ball < sum) {177 index++;178 if (!chosenIndices.Contains(index))179 ball += valueArray[++index];180 }181 yield return sourceArray[index];182 chosenIndices.Add(index);183 total -= valueArray[index];184 }185 }186 private static double[] PrepareProportional<T>(IList<T> sourceArray, IEnumerable<double> weights, bool windowing, bool inverseProportional) {187 double maxValue = double.MinValue, minValue = double.MaxValue;188 double[] valueArray = new double[sourceArray.Count];189 190 var weightsEnum = weights.GetEnumerator();191 for (int i = 0; i < sourceArray.Count && weightsEnum.MoveNext(); i++) {192 valueArray[i] = weightsEnum.Current;193 if (valueArray[i] > maxValue) maxValue = valueArray[i];194 if (valueArray[i] < minValue) minValue = valueArray[i];195 }196 if (minValue == maxValue) { // all values are equal197 for (int i = 0; i < sourceArray.Count; i++) {198 valueArray[i] = 1.0;199 }200 } else {201 if (windowing) {202 if (inverseProportional) InverseProportionalScale(valueArray, minValue);203 else ProportionalScale(valueArray, maxValue);204 } else {205 if (minValue < 0.0) throw new InvalidOperationException("Proportional selection without windowing does not work with values < 0.");206 if (inverseProportional) InverseProportionalScale(valueArray, 2 * maxValue);207 }208 }209 return valueArray;210 }211 private static void ProportionalScale(double[] values, double minValue) {212 for (int i = 0; i < values.Length; i++) {213 values[i] = values[i] - minValue;214 }215 }216 private static void InverseProportionalScale(double[] values, double maxValue) {217 for (int i = 0; i < values.Length; i++) {218 values[i] = maxValue - values[i];219 }220 }221 #endregion222 223 /// <summary>224 /// Selects all elements in the sequence that are maximal with respect to the given value.225 /// </summary>226 /// <remarks>227 /// Runtime complexity of the operation is O(N).228 /// </remarks>229 /// <typeparam name="T">The type of the elements.</typeparam>230 /// <param name="source">The enumeration in which the items with a maximal value should be found.</param>231 /// <param name="valueSelector">The function that selects the value to compare.</param>232 /// <returns>All elements in the enumeration where the selected value is the maximum.</returns>233 public static IEnumerable<T> MaxItems<T>(this IEnumerable<T> source, Func<T, IComparable> valueSelector) {234 IEnumerator<T> enumerator = source.GetEnumerator();235 if (!enumerator.MoveNext()) return Enumerable.Empty<T>();236 IComparable max = valueSelector(enumerator.Current);237 var result = new List<T>();238 result.Add(enumerator.Current);239 240 while (enumerator.MoveNext()) {241 T item = enumerator.Current;242 IComparable comparison = valueSelector(item);243 if (comparison.CompareTo(max) > 0) {244 result.Clear();245 result.Add(item);246 max = comparison;247 } else if (comparison.CompareTo(max) == 0) {248 result.Add(item);249 }250 }251 return result;252 }253 254 /// <summary>255 /// Selects all elements in the sequence that are minimal with respect to the given value.256 /// </summary>257 /// <remarks>258 /// Runtime complexity of the operation is O(N).259 /// </remarks>260 /// <typeparam name="T">The type of the elements.</typeparam>261 /// <param name="source">The enumeration in which items with a minimal value should be found.</param>262 /// <param name="valueSelector">The function that selects the value.</param>263 /// <returns>All elements in the enumeration where the selected value is the minimum.</returns>264 public static IEnumerable<T> MinItems<T>(this IEnumerable<T> source, Func<T, IComparable> valueSelector) {265 IEnumerator<T> enumerator = source.GetEnumerator();266 if (!enumerator.MoveNext()) return Enumerable.Empty<T>();267 IComparable min = valueSelector(enumerator.Current);268 var result = new List<T>();269 result.Add(enumerator.Current);270 271 while (enumerator.MoveNext()) {272 T item = enumerator.Current;273 IComparable comparison = valueSelector(item);274 if (comparison.CompareTo(min) < 0) {275 result.Clear();276 result.Add(item);277 min = comparison;278 } else if (comparison.CompareTo(min) == 0) {279 result.Add(item);280 }281 }282 return result;283 }284 #endregion285 286 #region Shuffling287 /// <summary>288 /// Shuffles an enumerable and returns a new enumerable according to the Fisher-Yates shuffle.289 /// </summary>290 /// <remarks>291 /// Note that the source enumerable is transformed into an array.292 ///293 /// The implementation is described in http://stackoverflow.com/questions/1287567/c-is-using-random-and-orderby-a-good-shuffle-algorithm.294 /// </remarks>295 /// <typeparam name="T">The type of the items that are to be shuffled.</typeparam>296 /// <param name="source">The enumerable that contains the items.</param>297 /// <param name="random">The random number generator, its Next(n) method must deliver uniformly distributed random numbers in the range [0;n).</param>298 /// <returns>An enumerable with the elements shuffled.</returns>299 public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, IRandom random) {300 T[] elements = source.ToArray();301 for (int i = elements.Length - 1; i > 0; i--) {302 // Swap element "i" with a random earlier element (including itself)303 int swapIndex = random.Next(i + 1);304 yield return elements[swapIndex];305 elements[swapIndex] = elements[i];306 // we don't actually perform the swap, we can forget about the307 // swapped element because we already returned it.308 }309 yield return elements[0];310 }311 #endregion312 313 28 #region Graph walk 314 29 /// <summary> … … 339 54 } 340 55 #endregion 341 342 #region Matrix operations343 /// <summary>344 /// Returns a transposed matrix of the given <paramref name="matrix"/>.345 /// </summary>346 /// <typeparam name="T">The type of the matrix</typeparam>347 /// <param name="matrix">The matrix that should be transposed.</param>348 /// <returns>The transposed matrix.</returns>349 public static T[,] Transpose<T>(this T[,] matrix) {350 var result = new T[matrix.GetLength(1), matrix.GetLength(0)];351 for (int i = 0; i < matrix.GetLength(0); i++)352 for (int j = 0; j < matrix.GetLength(1); j++)353 result[j, i] = matrix[i, j];354 return result;355 }356 #endregion357 56 } 358 57 } -
branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/HeuristicLab.Problems.GeneralizedQuadraticAssignment-3.3.csproj
r7593 r7813 88 88 </Reference> 89 89 <Reference Include="HeuristicLab.Problems.Instances-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 90 <SpecificVersion>False</SpecificVersion> 91 <Private>False</Private> 92 </Reference> 93 <Reference Include="HeuristicLab.Random-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 90 94 <SpecificVersion>False</SpecificVersion> 91 95 <Private>False</Private> -
branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/Operators/Crossovers/DiscreteLocationCrossover.cs
r7523 r7813 28 28 using HeuristicLab.Parameters; 29 29 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 30 using HeuristicLab. Problems.GeneralizedQuadraticAssignment.Common;30 using HeuristicLab.Random; 31 31 32 32 namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment { -
branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/Operators/Crossovers/GQAPPathRelinking.cs
r7807 r7813 30 30 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 31 31 using HeuristicLab.Problems.GeneralizedQuadraticAssignment.Common; 32 using HeuristicLab.Random; 32 33 33 34 namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment { -
branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/Operators/Manipulators/DemandEquivalentSwapEquipmentManipluator.cs
r7807 r7813 29 29 using HeuristicLab.Parameters; 30 30 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 31 using HeuristicLab. Problems.GeneralizedQuadraticAssignment.Common;31 using HeuristicLab.Random; 32 32 33 33 namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment { -
branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/Operators/Manipulators/RelocateEquipmentManipluator.cs
r7807 r7813 29 29 using HeuristicLab.Parameters; 30 30 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 31 using HeuristicLab. Problems.GeneralizedQuadraticAssignment.Common;31 using HeuristicLab.Random; 32 32 33 33 namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment { -
branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/Plugin.cs.frame
r7538 r7813 39 39 [PluginDependency("HeuristicLab.Problems.GeneralizedQuadraticAssignment.Common", "3.3")] 40 40 [PluginDependency("HeuristicLab.Problems.Instances", "3.3")] 41 [PluginDependency("HeuristicLab.Random", "3.3")] 41 42 public class HeuristicLabProblemsGeneralizedQuadraticAssignmentPlugin : PluginBase { 42 43 } -
branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/SolutionCreators/GreedyRandomizedSolutionCreator.cs
r7807 r7813 30 30 using HeuristicLab.Parameters; 31 31 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 32 using HeuristicLab. Problems.GeneralizedQuadraticAssignment.Common;32 using HeuristicLab.Random; 33 33 34 34 namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment { -
branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/SolutionCreators/RandomButFeasibleSolutionCreator.cs
r7807 r7813 30 30 using HeuristicLab.Parameters; 31 31 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 32 using HeuristicLab. Problems.GeneralizedQuadraticAssignment.Common;32 using HeuristicLab.Random; 33 33 34 34 namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment { -
branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/SolutionCreators/SlackMinimizationSolutionCreator.cs
r7807 r7813 30 30 using HeuristicLab.Parameters; 31 31 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 32 using HeuristicLab. Problems.GeneralizedQuadraticAssignment.Common;32 using HeuristicLab.Random; 33 33 34 34 namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
Note: See TracChangeset
for help on using the changeset viewer.