- Timestamp:
- 05/14/12 17:20:43 (13 years ago)
- Location:
- trunk/sources
- Files:
-
- 2 added
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Common/3.3/HeuristicLab.Common-3.3.csproj
r7626 r7812 124 124 <Compile Include="Content\IStorableContent.cs" /> 125 125 <Compile Include="Constants.cs" /> 126 <Compile Include="EnumerableExtensions.cs" /> 127 <Compile Include="MatrixExtensions.cs" /> 126 128 <Compile Include="NaturalStringComparer.cs" /> 127 129 <Compile Include="ObjectExtensions.cs" /> -
trunk/sources/HeuristicLab.Random/3.3/RandomEnumerable.cs
r7259 r7812 22 22 using System; 23 23 using System.Collections.Generic; 24 using System.Linq; 25 using HeuristicLab.Core; 24 26 25 27 namespace HeuristicLab.Random { 26 public class RandomEnumerable {28 public static class RandomEnumerable { 27 29 public static IEnumerable<int> SampleRandomNumbers(int maxElement, int count) { 28 30 return SampleRandomNumbers(Environment.TickCount, 0, maxElement, count); … … 48 50 } 49 51 } 52 53 /// <summary> 54 /// Chooses one elements from a sequence giving each element an equal chance. 55 /// </summary> 56 /// <remarks> 57 /// Runtime complexity is O(1) for sequences that are of type <see cref="IList{T}"/> and 58 /// O(N) for all other. 59 /// </remarks> 60 /// <exception cref="ArgumentException">If the sequence is empty.</exception> 61 /// <typeparam name="T">The type of the items to be selected.</typeparam> 62 /// <param name="source">The sequence of elements.</param> 63 /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param> 64 /// <param name="count">The number of items to be selected.</param> 65 /// <returns>An element that has been chosen randomly from the sequence.</returns> 66 public static T SampleRandom<T>(this IEnumerable<T> source, IRandom random) { 67 if (!source.Any()) throw new ArgumentException("sequence is empty.", "source"); 68 return source.SampleRandom(random, 1).First(); 69 } 70 71 /// <summary> 72 /// Chooses <paramref name="count"/> elements from a sequence with repetition with equal chances for each element. 73 /// </summary> 74 /// <remarks> 75 /// Runtime complexity is O(count) for sequences that are <see cref="IList{T}"/> and 76 /// O(N * count) for all other. No exception is thrown if the sequence is empty. 77 /// 78 /// The method is online. 79 /// </remarks> 80 /// <typeparam name="T">The type of the items to be selected.</typeparam> 81 /// <param name="source">The sequence of elements.</param> 82 /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param> 83 /// <param name="count">The number of items to be selected.</param> 84 /// <returns>A sequence of elements that have been chosen randomly.</returns> 85 public static IEnumerable<T> SampleRandom<T>(this IEnumerable<T> source, IRandom random, int count) { 86 var listSource = source as IList<T>; 87 if (listSource != null) { 88 while (count > 0) { 89 yield return listSource[random.Next(listSource.Count)]; 90 count--; 91 } 92 } else { 93 while (count > 0) { 94 var enumerator = source.GetEnumerator(); 95 enumerator.MoveNext(); 96 T selectedItem = enumerator.Current; 97 int counter = 1; 98 while (enumerator.MoveNext()) { 99 counter++; 100 if (counter * random.NextDouble() < 1.0) 101 selectedItem = enumerator.Current; 102 } 103 yield return selectedItem; 104 count--; 105 } 106 } 107 } 108 109 /// <summary> 110 /// Chooses <paramref name="count"/> elements from a sequence without repetition with equal chances for each element. 111 /// The items are returned in the same order as they appear in the sequence. 112 /// </summary> 113 /// <remarks> 114 /// Runtime complexity is O(N) for all sequences. 115 /// No exception is thrown if the sequence contains less items than there are to be selected. 116 /// 117 /// The method is online. 118 /// </remarks> 119 /// <typeparam name="T">The type of the items to be selected.</typeparam> 120 /// <param name="source">The sequence of elements.</param> 121 /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param> 122 /// <param name="count">The number of items to be selected.</param> 123 /// <returns>A sequence of elements that have been chosen randomly.</returns> 124 public static IEnumerable<T> SampleRandomWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count) { 125 int remaining = source.Count(); 126 foreach (var item in source) { 127 if (random.NextDouble() * remaining < count) { 128 count--; 129 yield return item; 130 if (count <= 0) break; 131 } 132 remaining--; 133 } 134 } 135 136 /// <summary> 137 /// Chooses elements out of a sequence with repetition. The chance that an item is selected is proportional or inverse-proportional 138 /// to the <paramref name="weights"/>. 139 /// </summary> 140 /// <remarks> 141 /// In case both <paramref name="inverseProportional"/> and <paramref name="windowing"/> are false values must be > 0, 142 /// otherwise an InvalidOperationException is thrown. 143 /// 144 /// The method internally holds two arrays: One that is the sequence itself and another one for the values. 145 /// </remarks> 146 /// <typeparam name="T">The type of the items to be selected.</typeparam> 147 /// <param name="source">The sequence of elements.</param> 148 /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param> 149 /// <param name="count">The number of items to be selected.</param> 150 /// <param name="weights">The weight values for the items.</param> 151 /// <param name="windowing">Whether to scale the proportional values or not.</param> 152 /// <param name="inverseProportional">Determines whether to choose proportionally (false) or inverse-proportionally (true).</param> 153 /// <returns>A sequence of selected items. The sequence might contain the same item more than once.</returns> 154 public static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, IRandom random, int count, IEnumerable<double> weights, bool windowing = true, bool inverseProportional = false) { 155 return source.SampleProportional(random, weights, windowing, inverseProportional).Take(count); 156 } 157 158 /// <summary> 159 /// Same as <seealso cref="SampleProportional<T>"/>, but chooses an item exactly once. 160 /// </summary> 161 /// <remarks> 162 /// In case both <paramref name="inverseProportional"/> and <paramref name="windowing"/> are false values must be > 0, 163 /// otherwise an InvalidOperationException is thrown. 164 /// 165 /// The method internally holds two arrays: One that is the sequence itself and another one for the values. 166 /// </remarks> 167 /// <typeparam name="T">The type of the items to be selected.</typeparam> 168 /// <param name="source">The sequence of elements.</param> 169 /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param> 170 /// <param name="count">The number of items to be selected.</param> 171 /// <param name="weights">The weight values for the items.</param> 172 /// <param name="windowing">Whether to scale the proportional values or not.</param> 173 /// <param name="maximization">Determines whether to choose proportionally (true) or inverse-proportionally (false).</param> 174 /// <returns>A sequence of selected items.</returns> 175 public static IEnumerable<T> SampleProportionalWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count, IEnumerable<double> weights, bool windowing = true, bool inverseProportional = false) { 176 return source.SampleProportionalWithoutRepetition(random, weights, windowing, inverseProportional).Take(count); 177 } 178 #region Proportional Helpers 179 private static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, IRandom random, IEnumerable<double> weights, bool windowing, bool inverseProportional) { 180 var sourceArray = source.ToArray(); 181 var valueArray = PrepareProportional<T>(sourceArray, weights, windowing, inverseProportional); 182 double total = valueArray.Sum(); 183 184 while (true) { 185 int index = 0; 186 double ball = valueArray[index], sum = random.NextDouble() * total; 187 while (ball < sum) 188 ball += valueArray[++index]; 189 yield return sourceArray[index]; 190 } 191 } 192 private static IEnumerable<T> SampleProportionalWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, IEnumerable<double> weights, bool windowing, bool inverseProportional) { 193 var sourceArray = source.ToArray(); 194 var valueArray = PrepareProportional<T>(sourceArray, weights, windowing, inverseProportional); 195 double total = valueArray.Sum(); 196 197 HashSet<int> chosenIndices = new HashSet<int>(); 198 while (chosenIndices.Count < sourceArray.Length) { 199 int index = 0; 200 double ball = valueArray[index], sum = random.NextDouble() * total; 201 while (ball < sum) { 202 index++; 203 if (!chosenIndices.Contains(index)) 204 ball += valueArray[++index]; 205 } 206 yield return sourceArray[index]; 207 chosenIndices.Add(index); 208 total -= valueArray[index]; 209 } 210 } 211 private static double[] PrepareProportional<T>(IList<T> sourceArray, IEnumerable<double> weights, bool windowing, bool inverseProportional) { 212 double maxValue = double.MinValue, minValue = double.MaxValue; 213 double[] valueArray = new double[sourceArray.Count]; 214 215 var weightsEnum = weights.GetEnumerator(); 216 for (int i = 0; i < sourceArray.Count && weightsEnum.MoveNext(); i++) { 217 valueArray[i] = weightsEnum.Current; 218 if (valueArray[i] > maxValue) maxValue = valueArray[i]; 219 if (valueArray[i] < minValue) minValue = valueArray[i]; 220 } 221 if (minValue == maxValue) { // all values are equal 222 for (int i = 0; i < sourceArray.Count; i++) { 223 valueArray[i] = 1.0; 224 } 225 } else { 226 if (windowing) { 227 if (inverseProportional) InverseProportionalScale(valueArray, minValue); 228 else ProportionalScale(valueArray, maxValue); 229 } else { 230 if (minValue < 0.0) throw new InvalidOperationException("Proportional selection without windowing does not work with values < 0."); 231 if (inverseProportional) InverseProportionalScale(valueArray, 2 * maxValue); 232 } 233 } 234 return valueArray; 235 } 236 private static void ProportionalScale(double[] values, double minValue) { 237 for (int i = 0; i < values.Length; i++) { 238 values[i] = values[i] - minValue; 239 } 240 } 241 private static void InverseProportionalScale(double[] values, double maxValue) { 242 for (int i = 0; i < values.Length; i++) { 243 values[i] = maxValue - values[i]; 244 } 245 } 246 #endregion 247 248 /// <summary> 249 /// Shuffles an enumerable and returns a new enumerable according to the Fisher-Yates shuffle. 250 /// </summary> 251 /// <remarks> 252 /// Note that the source enumerable is transformed into an array. 253 /// 254 /// The implementation is described in http://stackoverflow.com/questions/1287567/c-is-using-random-and-orderby-a-good-shuffle-algorithm. 255 /// </remarks> 256 /// <typeparam name="T">The type of the items that are to be shuffled.</typeparam> 257 /// <param name="source">The enumerable that contains the items.</param> 258 /// <param name="random">The random number generator, its Next(n) method must deliver uniformly distributed random numbers in the range [0;n).</param> 259 /// <returns>An enumerable with the elements shuffled.</returns> 260 public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, IRandom random) { 261 T[] elements = source.ToArray(); 262 for (int i = elements.Length - 1; i > 0; i--) { 263 // Swap element "i" with a random earlier element (including itself) 264 int swapIndex = random.Next(i + 1); 265 yield return elements[swapIndex]; 266 elements[swapIndex] = elements[i]; 267 // we don't actually perform the swap, we can forget about the 268 // swapped element because we already returned it. 269 } 270 yield return elements[0]; 271 } 50 272 } 51 273 }
Note: See TracChangeset
for help on using the changeset viewer.