Changeset 7460 for branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/Implementation
- Timestamp:
- 02/06/12 17:50:17 (13 years ago)
- Location:
- branches/HeuristicLab.TimeSeries
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.TimeSeries
- Property svn:ignore
-
old new 3 3 *.resharper 4 4 *.suo 5 *.user 5 6 *.vsp 6 7 Doxygen 8 FxCopResults.txt 7 9 Google.ProtocolBuffers-0.9.1.dll 8 10 HeuristicLab 3.3.5.1.ReSharper.user
-
- Property svn:mergeinfo changed
- Property svn:ignore
-
branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis merged: 7272
- Property svn:mergeinfo changed
-
branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionSolutionBase.cs
r7268 r7460 40 40 private const string TrainingNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (training)"; 41 41 private const string TestNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (test)"; 42 private const string TrainingMeanErrorResultName = "Mean error (training)"; 43 private const string TestMeanErrorResultName = "Mean error (test)"; 42 44 43 45 public new IRegressionModel Model { … … 96 98 get { return ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value; } 97 99 private set { ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value = value; } 100 } 101 public double TrainingMeanError { 102 get { return ((DoubleValue)this[TrainingMeanErrorResultName].Value).Value; } 103 private set { ((DoubleValue)this[TrainingMeanErrorResultName].Value).Value = value; } 104 } 105 public double TestMeanError { 106 get { return ((DoubleValue)this[TestMeanErrorResultName].Value).Value; } 107 private set { ((DoubleValue)this[TestMeanErrorResultName].Value).Value = value; } 98 108 } 99 109 #endregion … … 116 126 Add(new Result(TrainingNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the training partition", new DoubleValue())); 117 127 Add(new Result(TestNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the test partition", new DoubleValue())); 128 Add(new Result(TrainingMeanErrorResultName, "Mean of errors of the model on the training partition", new DoubleValue())); 129 Add(new Result(TestMeanErrorResultName, "Mean of errors of the model on the test partition", new DoubleValue())); 118 130 } 119 131 … … 136 148 double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(EstimatedTestValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes), out errorState); 137 149 TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN; 150 } 151 152 if (!ContainsKey(TrainingMeanErrorResultName)) { 153 OnlineCalculatorError errorState; 154 Add(new Result(TrainingMeanErrorResultName, "Mean of errors of the model on the training partition", new DoubleValue())); 155 double trainingME = OnlineMeanErrorCalculator.Calculate(EstimatedTrainingValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes), out errorState); 156 TrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN; 157 } 158 if (!ContainsKey(TestMeanErrorResultName)) { 159 OnlineCalculatorError errorState; 160 Add(new Result(TestMeanErrorResultName, "Mean of errors of the model on the test partition", new DoubleValue())); 161 double testME = OnlineMeanErrorCalculator.Calculate(EstimatedTestValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes), out errorState); 162 TestMeanError = errorState == OnlineCalculatorError.None ? testME : double.NaN; 138 163 } 139 164 #endregion … … 171 196 double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 172 197 TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN; 198 199 double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 200 TrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN; 201 double testME = OnlineMeanErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 202 TestMeanError = errorState == OnlineCalculatorError.None ? testME : double.NaN; 173 203 } 174 204 }
Note: See TracChangeset
for help on using the changeset viewer.