- Timestamp:
- 02/06/12 17:50:17 (13 years ago)
- Location:
- branches/HeuristicLab.TimeSeries
- Files:
-
- 6 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.TimeSeries
- Property svn:ignore
-
old new 3 3 *.resharper 4 4 *.suo 5 *.user 5 6 *.vsp 6 7 Doxygen 8 FxCopResults.txt 7 9 Google.ProtocolBuffers-0.9.1.dll 8 10 HeuristicLab 3.3.5.1.ReSharper.user
-
- Property svn:mergeinfo changed
- Property svn:ignore
-
branches/HeuristicLab.TimeSeries/HeuristicLab.Algorithms.DataAnalysis/3.4/HeuristicLab.Algorithms.DataAnalysis-3.4.csproj
r7099 r7460 101 101 </PropertyGroup> 102 102 <ItemGroup> 103 <Reference Include="ALGLIB-3. 1.0, Version=3.1.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL">104 <HintPath>..\..\bin\ALGLIB-3. 1.0.dll</HintPath>103 <Reference Include="ALGLIB-3.4.0, Version=3.4.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 104 <HintPath>..\..\bin\ALGLIB-3.4.0.dll</HintPath> 105 105 <Private>False</Private> 106 106 </Reference> -
branches/HeuristicLab.TimeSeries/HeuristicLab.Algorithms.DataAnalysis/3.4/NearestNeighbour/NearestNeighbourModel.cs
r7268 r7460 73 73 kdTree.curdist = original.kdTree.curdist; 74 74 kdTree.debugcounter = original.kdTree.debugcounter; 75 kdTree.distmatrixtype = original.kdTree.distmatrixtype;76 75 kdTree.idx = (int[])original.kdTree.idx.Clone(); 77 76 kdTree.kcur = original.kdTree.kcur; … … 241 240 } 242 241 [Storable] 243 public int KDTreeDistMatrixType {244 get { return kdTree.distmatrixtype; }245 set { kdTree.distmatrixtype = value; }246 }247 [Storable]248 242 public int[] KDTreeIdx { 249 243 get { return kdTree.idx; } -
branches/HeuristicLab.TimeSeries/HeuristicLab.Algorithms.DataAnalysis/3.4/Plugin.cs.frame
r7268 r7460 28 28 [Plugin("HeuristicLab.Algorithms.DataAnalysis", "Provides wrappers for data analysis algorithms implemented in external libraries (linear regression, linear discriminant analysis, k-means clustering, support vector classification and regression)", "3.4.2.$WCREV$")] 29 29 [PluginFile("HeuristicLab.Algorithms.DataAnalysis-3.4.dll", PluginFileType.Assembly)] 30 [PluginDependency("HeuristicLab.ALGLIB", "3. 1.0")]30 [PluginDependency("HeuristicLab.ALGLIB", "3.4.0")] 31 31 [PluginDependency("HeuristicLab.Collections", "3.3")] 32 32 [PluginDependency("HeuristicLab.Common", "3.3")] -
branches/HeuristicLab.TimeSeries/HeuristicLab.Algorithms.DataAnalysis/3.4/SupportVectorMachine/SupportVectorClassification.cs
r7268 r7460 113 113 IClassificationProblemData problemData = Problem.ProblemData; 114 114 IEnumerable<string> selectedInputVariables = problemData.AllowedInputVariables; 115 var solution = CreateSupportVectorClassificationSolution(problemData, selectedInputVariables, SvmType.Value, KernelType.Value, Cost.Value, Nu.Value, Gamma.Value); 115 double trainingAccuracy, testAccuracy; 116 int nSv; 117 var solution = CreateSupportVectorClassificationSolution(problemData, selectedInputVariables, 118 SvmType.Value, KernelType.Value, Cost.Value, Nu.Value, Gamma.Value, 119 out trainingAccuracy, out testAccuracy, out nSv); 116 120 117 121 Results.Add(new Result("Support vector classification solution", "The support vector classification solution.", solution)); 122 Results.Add(new Result("Training accuracy", "The accuracy of the SVR solution on the training partition.", new DoubleValue(trainingAccuracy))); 123 Results.Add(new Result("Test R²", "The accuracy of the SVR solution on the test partition.", new DoubleValue(testAccuracy))); 124 Results.Add(new Result("Number of support vectors", "The number of support vectors of the SVR solution.", new IntValue(nSv))); 118 125 } 119 126 120 127 public static SupportVectorClassificationSolution CreateSupportVectorClassificationSolution(IClassificationProblemData problemData, IEnumerable<string> allowedInputVariables, 121 string svmType, string kernelType, double cost, double nu, double gamma) { 128 string svmType, string kernelType, double cost, double nu, double gamma, 129 out double trainingAccuracy, out double testAccuracy, out int nSv) { 122 130 Dataset dataset = problemData.Dataset; 123 131 string targetVariable = problemData.TargetVariable; … … 148 156 SVM.RangeTransform rangeTransform = SVM.RangeTransform.Compute(problem); 149 157 SVM.Problem scaledProblem = SVM.Scaling.Scale(rangeTransform, problem); 150 var model = new SupportVectorMachineModel(SVM.Training.Train(scaledProblem, parameter), rangeTransform, targetVariable, allowedInputVariables, problemData.ClassValues); 158 var svmModel = SVM.Training.Train(scaledProblem, parameter); 159 var model = new SupportVectorMachineModel(svmModel, rangeTransform, targetVariable, allowedInputVariables, problemData.ClassValues); 160 var solution = new SupportVectorClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); 151 161 152 return new SupportVectorClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); 162 nSv = svmModel.SupportVectorCount; 163 trainingAccuracy = solution.TrainingAccuracy; 164 testAccuracy = solution.TestAccuracy; 165 166 return solution; 153 167 } 154 168 #endregion -
branches/HeuristicLab.TimeSeries/HeuristicLab.Algorithms.DataAnalysis/3.4/SupportVectorMachine/SupportVectorRegression.cs
r7268 r7460 121 121 IRegressionProblemData problemData = Problem.ProblemData; 122 122 IEnumerable<string> selectedInputVariables = problemData.AllowedInputVariables; 123 var solution = CreateSupportVectorRegressionSolution(problemData, selectedInputVariables, SvmType.Value, KernelType.Value, Cost.Value, Nu.Value, Gamma.Value, Epsilon.Value); 123 double trainR2, testR2; 124 int nSv; 125 var solution = CreateSupportVectorRegressionSolution(problemData, selectedInputVariables, SvmType.Value, 126 KernelType.Value, Cost.Value, Nu.Value, Gamma.Value, Epsilon.Value, 127 out trainR2, out testR2, out nSv); 124 128 125 129 Results.Add(new Result("Support vector regression solution", "The support vector regression solution.", solution)); 130 Results.Add(new Result("Training R²", "The Pearson's R² of the SVR solution on the training partition.", new DoubleValue(trainR2))); 131 Results.Add(new Result("Test R²", "The Pearson's R² of the SVR solution on the test partition.", new DoubleValue(testR2))); 132 Results.Add(new Result("Number of support vectors", "The number of support vectors of the SVR solution.", new IntValue(nSv))); 126 133 } 127 134 128 135 public static SupportVectorRegressionSolution CreateSupportVectorRegressionSolution(IRegressionProblemData problemData, IEnumerable<string> allowedInputVariables, 129 string svmType, string kernelType, double cost, double nu, double gamma, double epsilon) { 136 string svmType, string kernelType, double cost, double nu, double gamma, double epsilon, 137 out double trainingR2, out double testR2, out int nSv) { 130 138 Dataset dataset = problemData.Dataset; 131 139 string targetVariable = problemData.TargetVariable; … … 146 154 SVM.RangeTransform rangeTransform = SVM.RangeTransform.Compute(problem); 147 155 SVM.Problem scaledProblem = SVM.Scaling.Scale(rangeTransform, problem); 148 var model = new SupportVectorMachineModel(SVM.Training.Train(scaledProblem, parameter), rangeTransform, targetVariable, allowedInputVariables); 149 return new SupportVectorRegressionSolution(model, (IRegressionProblemData)problemData.Clone()); 156 var svmModel = SVM.Training.Train(scaledProblem, parameter); 157 nSv = svmModel.SupportVectorCount; 158 var model = new SupportVectorMachineModel(svmModel, rangeTransform, targetVariable, allowedInputVariables); 159 var solution = new SupportVectorRegressionSolution(model, (IRegressionProblemData)problemData.Clone()); 160 trainingR2 = solution.TrainingRSquared; 161 testR2 = solution.TestRSquared; 162 return solution; 150 163 } 151 164 #endregion
Note: See TracChangeset
for help on using the changeset viewer.