Free cookie consent management tool by TermsFeed Policy Generator

Changeset 7336


Ignore:
Timestamp:
01/16/12 17:02:55 (13 years ago)
Author:
sforsten
Message:

#1669:

  • bug fixed in RegressionBenchmark
  • adapted trainings partitions of some benchmark problems
Location:
branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4
Files:
21 edited

Legend:

Unmodified
Added
Removed
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Keijzer/KeijzerFunctionFifteen.cs

    r7328 r7336  
    4040      inputVariables = new List<string>() { "X", "Y" };
    4141      trainingPartition = new IntRange(0, 20);
    42       testPartition = new IntRange(20, 120);
     42      testPartition = new IntRange(2500, 2600);
    4343    }
    4444
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Keijzer/KeijzerFunctionSixteen.cs

    r7328 r7336  
    4040      inputVariables = new List<string>() { "X", "Y" };
    4141      trainingPartition = new IntRange(0, 20);
    42       testPartition = new IntRange(20, 120);
     42      testPartition = new IntRange(2500, 2600);
    4343    }
    4444
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Keijzer/KeijzerFunctionThirteen.cs

    r7328 r7336  
    4040      inputVariables = new List<string>() { "X", "Y" };
    4141      trainingPartition = new IntRange(0, 20);
    42       testPartition = new IntRange(20, 120);
     42      testPartition = new IntRange(2500, 2600);
    4343    }
    4444
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Keijzer/KeijzerFunctionTwelve.cs

    r7328 r7336  
    4040      inputVariables = new List<string>() { "X", "Y" };
    4141      trainingPartition = new IntRange(0, 20);
    42       testPartition = new IntRange(20, 120);
     42      testPartition = new IntRange(2500, 2600);
    4343    }
    4444
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionEight.cs

    r7127 r7336  
    3737      targetVariable = "Y";
    3838      inputVariables = new List<string>() { "X" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 20);
     40      testPartition = new IntRange(250, 350);
    4141    }
    4242
     
    5454      List<List<double>> dataList = new List<List<double>>();
    5555      DoubleRange range = new DoubleRange(0, 4);
    56       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     56      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(500, range));
    5757
    5858      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionEleven.cs

    r7127 r7336  
    3737      targetVariable = "Z";
    3838      inputVariables = new List<string>() { "X", "Y" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 100);
     40      testPartition = new IntRange(500, 1000);
    4141    }
    4242
     
    5555      List<List<double>> dataList = new List<List<double>>();
    5656      DoubleRange range = new DoubleRange(0, 1);
    57       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
    58       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     57      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(1000, range));
     58      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(1000, range));
    5959
    6060      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionFive.cs

    r7127 r7336  
    3737      targetVariable = "Y";
    3838      inputVariables = new List<string>() { "X" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 20);
     40      testPartition = new IntRange(250, 350);
    4141    }
    4242
     
    5454      List<List<double>> dataList = new List<List<double>>();
    5555      DoubleRange range = new DoubleRange(-1, 1);
    56       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     56      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(500, range));
    5757
    5858      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionFour.cs

    r7127 r7336  
    3737      targetVariable = "Y";
    3838      inputVariables = new List<string>() { "X" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 20);
     40      testPartition = new IntRange(250, 350);
    4141    }
    4242
     
    5454      List<List<double>> dataList = new List<List<double>>();
    5555      DoubleRange range = new DoubleRange(-1, 1);
    56       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     56      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(500, range));
    5757
    5858      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionNine.cs

    r7127 r7336  
    3737      targetVariable = "Z";
    3838      inputVariables = new List<string>() { "X", "Y" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 100);
     40      testPartition = new IntRange(500, 1000);
    4141    }
    4242
     
    5555      List<List<double>> dataList = new List<List<double>>();
    5656      DoubleRange range = new DoubleRange(0, 1);
    57       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
    58       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     57      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(1000, range));
     58      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(1000, range));
    5959
    6060      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionOne.cs

    r7127 r7336  
    3737      targetVariable = "Y";
    3838      inputVariables = new List<string>() { "X" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 20);
     40      testPartition = new IntRange(250, 350);
    4141    }
    4242
     
    5454      List<List<double>> dataList = new List<List<double>>();
    5555      DoubleRange range = new DoubleRange(-1, 1);
    56       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     56      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(500, range));
    5757
    5858      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionSeven.cs

    r7127 r7336  
    3737      targetVariable = "Y";
    3838      inputVariables = new List<string>() { "X" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 20);
     40      testPartition = new IntRange(250, 350);
    4141    }
    4242
     
    5454      List<List<double>> dataList = new List<List<double>>();
    5555      DoubleRange range = new DoubleRange(0, 2);
    56       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     56      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(500, range));
    5757
    5858      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionSix.cs

    r7127 r7336  
    3737      targetVariable = "Y";
    3838      inputVariables = new List<string>() { "X" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 20);
     40      testPartition = new IntRange(250, 350);
    4141    }
    4242
     
    5454      List<List<double>> dataList = new List<List<double>>();
    5555      DoubleRange range = new DoubleRange(1, -1);
    56       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     56      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(500, range));
    5757
    5858      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionTen.cs

    r7127 r7336  
    3737      targetVariable = "Z";
    3838      inputVariables = new List<string>() { "X", "Y" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 100);
     40      testPartition = new IntRange(500, 1000);
    4141    }
    4242
     
    5555      List<List<double>> dataList = new List<List<double>>();
    5656      DoubleRange range = new DoubleRange(0, 1);
    57       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
    58       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     57      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(1000, range));
     58      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(1000, range));
    5959
    6060      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionThree.cs

    r7127 r7336  
    3737      targetVariable = "Y";
    3838      inputVariables = new List<string>() { "X" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 20);
     40      testPartition = new IntRange(250, 350);
    4141    }
    4242
     
    5454      List<List<double>> dataList = new List<List<double>>();
    5555      DoubleRange range = new DoubleRange(-1, 1);
    56       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     56      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(500, range));
    5757
    5858      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionTwelve.cs

    r7127 r7336  
    3737      targetVariable = "Z";
    3838      inputVariables = new List<string>() { "X", "Y" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 100);
     40      testPartition = new IntRange(500, 1000);
    4141    }
    4242
     
    5555      List<List<double>> dataList = new List<List<double>>();
    5656      DoubleRange range = new DoubleRange(0, 1);
    57       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
    58       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     57      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(1000, range));
     58      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(1000, range));
    5959
    6060      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Nguyen/NguyenFunctionTwo.cs

    r7127 r7336  
    3737      targetVariable = "Y";
    3838      inputVariables = new List<string>() { "X" };
    39       trainingPartition = new IntRange(0, 250);
    40       testPartition = new IntRange(250, 500);
     39      trainingPartition = new IntRange(0, 20);
     40      testPartition = new IntRange(250, 350);
    4141    }
    4242
     
    5454      List<List<double>> dataList = new List<List<double>>();
    5555      DoubleRange range = new DoubleRange(-1, 1);
    56       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(testPartition.End, range));
     56      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(500, range));
    5757
    5858      return dataList;
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Vladislavleva/KotanchekFunction.cs

    r7127 r7336  
    3838      inputVariables = new List<string>() { "X1", "X2" };
    3939      trainingPartition = new IntRange(0, 100);
    40       testPartition = new IntRange(100, 2125);
     40      testPartition = new IntRange(1000, 3025);
    4141    }
    4242
     
    5555      List<List<double>> dataList = new List<List<double>>();
    5656      DoubleRange trainingRange = new DoubleRange(0.3, 4);
    57       for (int i = 0; i < InputVariable.Count; i++) {
    58         dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(TrainingPartition.End, trainingRange));
    59       }
    6057
    6158      List<double> oneVariableTestData = RegressionBenchmark.GenerateSteps(new DoubleRange(-0.2, 4.2), 0.1);
     
    6360      testData = RegressionBenchmark.GenerateAllCombinationsOfValuesInLists(testData);
    6461      for (int i = 0; i < InputVariable.Count; i++) {
     62        dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(1000, trainingRange));
    6563        dataList[i].AddRange(testData[i]);
    6664      }
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Vladislavleva/RationalPolynomialThreeDimensional.cs

    r7127 r7336  
    3838      inputVariables = new List<string>() { "X1", "X2", "X3" };
    3939      trainingPartition = new IntRange(0, 300);
    40       testPartition = new IntRange(300, 3000);
     40      testPartition = new IntRange(1000, 3700);
    4141    }
    4242
     
    5555    protected override List<List<double>> GenerateInput() {
    5656      List<List<double>> dataList = new List<List<double>>();
    57       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(300, new DoubleRange(0.05, 2)));
    58       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(300, new DoubleRange(1, 2)));
    59       dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(300, new DoubleRange(0.05, 2)));
     57      int amountOfPoints = 1000;
     58      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(amountOfPoints, new DoubleRange(0.05, 2)));
     59      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(amountOfPoints, new DoubleRange(1, 2)));
     60      dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(amountOfPoints, new DoubleRange(0.05, 2)));
    6061
    6162      List<List<double>> testData = new List<List<double>>() {
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Vladislavleva/RationalPolynomialTwoDimensional.cs

    r7127 r7336  
    3838      inputVariables = new List<string>() { "X1", "X2" };
    3939      trainingPartition = new IntRange(0, 50);
    40       testPartition = new IntRange(50, 1207);
     40      testPartition = new IntRange(1000, 2157);
    4141    }
    4242
     
    5555      List<List<double>> dataList = new List<List<double>>();
    5656      DoubleRange trainingRange = new DoubleRange(0.05, 6.05);
    57       for (int i = 0; i < InputVariable.Count; i++) {
    58         dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(TrainingPartition.End, trainingRange));
    59       }
    6057
    6158      List<double> oneVariableTestData = RegressionBenchmark.GenerateSteps(new DoubleRange(-0.25, 6.35), 0.2);
     
    6461      testData = RegressionBenchmark.GenerateAllCombinationsOfValuesInLists(testData);
    6562      for (int i = 0; i < InputVariable.Count; i++) {
     63        dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(1000, trainingRange));
    6664        dataList[i].AddRange(testData[i]);
    6765      }
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionBenchmarks/Vladislavleva/SineCosineFunction.cs

    r7127 r7336  
    3838      inputVariables = new List<string>() { "X1", "X2" };
    3939      trainingPartition = new IntRange(0, 30);
    40       testPartition = new IntRange(30, 991);
     40      testPartition = new IntRange(500, 1461);
    4141    }
    4242
     
    5555      List<List<double>> dataList = new List<List<double>>();
    5656      DoubleRange trainingRange = new DoubleRange(0.1, 5.9);
    57       for (int i = 0; i < InputVariable.Count; i++) {
    58         dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(30, trainingRange));
    59       }
    6057
    6158      List<double> oneVariableTestData = RegressionBenchmark.GenerateSteps(new DoubleRange(-0.05, 6.05), 0.02);
     
    6461
    6562      for (int i = 0; i < InputVariable.Count; i++) {
     63        dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(500, trainingRange));
    6664        dataList[i].AddRange(testData[i]);
    6765      }
  • branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionGenerator/RegressionBenchmark.cs

    r7127 r7336  
    2020#endregion
    2121
     22using System;
    2223using System.Collections.Generic;
    2324using System.Linq;
     
    6263
    6364    public static List<double> GenerateSteps(DoubleRange range, double stepWidth) {
    64       return Enumerable.Range(0, (int)((range.End - range.Start) / stepWidth) + 1)
     65      return Enumerable.Range(0, (int)Math.Round(((range.End - range.Start) / stepWidth) + 1))
    6566                                      .Select(i => (range.Start + i * stepWidth))
    6667                                      .ToList<double>();
Note: See TracChangeset for help on using the changeset viewer.