Changeset 7233
- Timestamp:
- 12/25/11 20:52:38 (13 years ago)
- Location:
- trunk/sources
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearDiscriminantAnalysis.cs
r6649 r7233 100 100 } 101 101 102 ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();103 cNode.Value = w[w.Length - 1];104 addition.AddSubtree(cNode);105 106 107 102 var model = LinearDiscriminantAnalysis.CreateDiscriminantFunctionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter(), problemData, rows); 108 103 SymbolicDiscriminantFunctionClassificationSolution solution = new SymbolicDiscriminantFunctionClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views/3.4/InteractiveSymbolicDiscriminantFunctionClassificationSolutionSimplifierView.cs
r7027 r7233 81 81 double[] thresholds; 82 82 // normal distribution cut points are used as thresholds here because they are a lot faster to calculate than the accuracy maximizing thresholds 83 NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(Content.ProblemData, originalOutput, targetClassValues, out classValues, out thresholds);83 AccuracyMaximizationThresholdCalculator.CalculateThresholds(Content.ProblemData, originalOutput, targetClassValues, out classValues, out thresholds); 84 84 var classifier = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter); 85 85 classifier.SetThresholdsAndClassValues(thresholds, classValues); … … 96 96 .LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit) 97 97 .ToArray(); 98 NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(Content.ProblemData, newOutput, targetClassValues, out classValues, out thresholds);98 AccuracyMaximizationThresholdCalculator.CalculateThresholds(Content.ProblemData, newOutput, targetClassValues, out classValues, out thresholds); 99 99 classifier = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter); 100 100 classifier.SetThresholdsAndClassValues(thresholds, classValues);
Note: See TracChangeset
for help on using the changeset viewer.