Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
11/08/11 10:13:21 (13 years ago)
Author:
mkommend
Message:

#1670: Corrected calculation of DataAnalysisSolution results and modified online calculators to have more meaningful parameter names.

Location:
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolutionBase.cs

    r6913 r6961  
    8484
    8585      OnlineCalculatorError errorState;
    86       double trainingAccuracy = OnlineAccuracyCalculator.Calculate(estimatedTrainingClassValues, originalTrainingClassValues, out errorState);
     86      double trainingAccuracy = OnlineAccuracyCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
    8787      if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN;
    88       double testAccuracy = OnlineAccuracyCalculator.Calculate(estimatedTestClassValues, originalTestClassValues, out errorState);
     88      double testAccuracy = OnlineAccuracyCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
    8989      if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN;
    9090
  • trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationSolutionBase.cs

    r6913 r6961  
    108108
    109109      OnlineCalculatorError errorState;
    110       double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
     110      double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
    111111      TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
    112       double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
     112      double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
    113113      TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
    114114
    115       double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState);
     115      double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
    116116      TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN;
    117       double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedTestValues, originalTestValues, out errorState);
     117      double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
    118118      TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN;
    119119
Note: See TracChangeset for help on using the changeset viewer.