- Timestamp:
- 11/08/11 10:13:21 (13 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolutionBase.cs
r6913 r6961 84 84 85 85 OnlineCalculatorError errorState; 86 double trainingAccuracy = OnlineAccuracyCalculator.Calculate( estimatedTrainingClassValues, originalTrainingClassValues, out errorState);86 double trainingAccuracy = OnlineAccuracyCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState); 87 87 if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN; 88 double testAccuracy = OnlineAccuracyCalculator.Calculate( estimatedTestClassValues, originalTestClassValues, out errorState);88 double testAccuracy = OnlineAccuracyCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState); 89 89 if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN; 90 90 -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationSolutionBase.cs
r6913 r6961 108 108 109 109 OnlineCalculatorError errorState; 110 double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);110 double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 111 111 TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN; 112 double testMSE = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);112 double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 113 113 TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN; 114 114 115 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);115 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 116 116 TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN; 117 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);117 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 118 118 TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN; 119 119 -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionSolutionBase.cs
r6740 r6961 147 147 148 148 OnlineCalculatorError errorState; 149 double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);149 double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 150 150 TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN; 151 double testMSE = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);151 double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 152 152 TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN; 153 153 154 double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);154 double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 155 155 TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN; 156 double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);156 double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 157 157 TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN; 158 158 159 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);159 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 160 160 TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN; 161 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);161 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 162 162 TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN; 163 163 164 double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);164 double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 165 165 TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN; 166 double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);166 double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 167 167 TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN; 168 168 169 double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);169 double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 170 170 TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN; 171 double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);171 double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 172 172 TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN; 173 173 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/TimeSeriesPrognosisSolutionBase.cs
r6802 r6961 166 166 167 167 OnlineCalculatorError errorState; 168 double trainingMse = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);168 double trainingMse = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 169 169 TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMse : double.NaN; 170 double testMse = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);170 double testMse = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 171 171 TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMse : double.NaN; 172 172 173 double trainingMae = OnlineMeanAbsoluteErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);173 double trainingMae = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 174 174 TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMae : double.NaN; 175 double testMae = OnlineMeanAbsoluteErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);175 double testMae = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 176 176 TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMae : double.NaN; 177 177 178 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);178 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 179 179 TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN; 180 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);180 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 181 181 TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN; 182 182 183 double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);183 double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 184 184 TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN; 185 double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);185 double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 186 186 TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN; 187 187 188 double trainingNmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);188 double trainingNmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 189 189 TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNmse : double.NaN; 190 double testNmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);190 double testNmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 191 191 TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNmse : double.NaN; 192 192 193 double trainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);193 double trainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 194 194 TrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? trainingDirectionalSymmetry : double.NaN; 195 double testDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);195 double testDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 196 196 TestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? testDirectionalSymmetry : double.NaN; 197 197 198 double trainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);198 double trainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 199 199 TrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? trainingWeightedDirectionalSymmetry : double.NaN; 200 double testWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);200 double testWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 201 201 TestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? testWeightedDirectionalSymmetry : double.NaN; 202 202 203 double trainingTheilsU = OnlineTheilsUStatisticCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);203 double trainingTheilsU = OnlineTheilsUStatisticCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 204 204 TrainingTheilsUStatistic = errorState == OnlineCalculatorError.None ? trainingTheilsU : double.NaN; 205 double testTheilsU = OnlineTheilsUStatisticCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);205 double testTheilsU = OnlineTheilsUStatisticCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 206 206 TestTheilsUStatistic = errorState == OnlineCalculatorError.None ? testTheilsU : double.NaN; 207 207
Note: See TracChangeset
for help on using the changeset viewer.