Changeset 6961 for trunk/sources
- Timestamp:
- 11/08/11 10:13:21 (13 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4
- Files:
-
- 11 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolutionBase.cs
r6913 r6961 84 84 85 85 OnlineCalculatorError errorState; 86 double trainingAccuracy = OnlineAccuracyCalculator.Calculate( estimatedTrainingClassValues, originalTrainingClassValues, out errorState);86 double trainingAccuracy = OnlineAccuracyCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState); 87 87 if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN; 88 double testAccuracy = OnlineAccuracyCalculator.Calculate( estimatedTestClassValues, originalTestClassValues, out errorState);88 double testAccuracy = OnlineAccuracyCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState); 89 89 if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN; 90 90 -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationSolutionBase.cs
r6913 r6961 108 108 109 109 OnlineCalculatorError errorState; 110 double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);110 double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 111 111 TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN; 112 double testMSE = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);112 double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 113 113 TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN; 114 114 115 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);115 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 116 116 TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN; 117 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);117 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 118 118 TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN; 119 119 -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionSolutionBase.cs
r6740 r6961 147 147 148 148 OnlineCalculatorError errorState; 149 double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);149 double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 150 150 TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN; 151 double testMSE = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);151 double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 152 152 TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN; 153 153 154 double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);154 double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 155 155 TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN; 156 double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);156 double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 157 157 TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN; 158 158 159 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);159 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 160 160 TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN; 161 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);161 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 162 162 TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN; 163 163 164 double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);164 double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 165 165 TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN; 166 double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);166 double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 167 167 TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN; 168 168 169 double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);169 double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 170 170 TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN; 171 double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);171 double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 172 172 TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN; 173 173 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/TimeSeriesPrognosisSolutionBase.cs
r6802 r6961 166 166 167 167 OnlineCalculatorError errorState; 168 double trainingMse = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);168 double trainingMse = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 169 169 TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMse : double.NaN; 170 double testMse = OnlineMeanSquaredErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);170 double testMse = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 171 171 TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMse : double.NaN; 172 172 173 double trainingMae = OnlineMeanAbsoluteErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);173 double trainingMae = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 174 174 TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMae : double.NaN; 175 double testMae = OnlineMeanAbsoluteErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);175 double testMae = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 176 176 TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMae : double.NaN; 177 177 178 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);178 double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 179 179 TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN; 180 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);180 double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 181 181 TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN; 182 182 183 double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);183 double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 184 184 TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN; 185 double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);185 double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 186 186 TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN; 187 187 188 double trainingNmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);188 double trainingNmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 189 189 TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNmse : double.NaN; 190 double testNmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);190 double testNmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 191 191 TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNmse : double.NaN; 192 192 193 double trainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);193 double trainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 194 194 TrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? trainingDirectionalSymmetry : double.NaN; 195 double testDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);195 double testDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 196 196 TestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? testDirectionalSymmetry : double.NaN; 197 197 198 double trainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);198 double trainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 199 199 TrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? trainingWeightedDirectionalSymmetry : double.NaN; 200 double testWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);200 double testWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 201 201 TestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? testWeightedDirectionalSymmetry : double.NaN; 202 202 203 double trainingTheilsU = OnlineTheilsUStatisticCalculator.Calculate( estimatedTrainingValues, originalTrainingValues, out errorState);203 double trainingTheilsU = OnlineTheilsUStatisticCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 204 204 TrainingTheilsUStatistic = errorState == OnlineCalculatorError.None ? trainingTheilsU : double.NaN; 205 double testTheilsU = OnlineTheilsUStatisticCalculator.Calculate( estimatedTestValues, originalTestValues, out errorState);205 double testTheilsU = OnlineTheilsUStatisticCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 206 206 TestTheilsUStatistic = errorState == OnlineCalculatorError.None ? testTheilsU : double.NaN; 207 207 -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlineAccuracyCalculator.cs
r5945 r6961 68 68 #endregion 69 69 70 public static double Calculate(IEnumerable<double> first, IEnumerable<double> second, out OnlineCalculatorError errorState) {71 IEnumerator<double> firstEnumerator = first.GetEnumerator();72 IEnumerator<double> secondEnumerator = second.GetEnumerator();70 public static double Calculate(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues, out OnlineCalculatorError errorState) { 71 IEnumerator<double> originalEnumerator = originalValues.GetEnumerator(); 72 IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator(); 73 73 OnlineAccuracyCalculator accuracyCalculator = new OnlineAccuracyCalculator(); 74 74 75 75 // always move forward both enumerators (do not use short-circuit evaluation!) 76 while ( firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) {77 double estimated = secondEnumerator.Current;78 double original = firstEnumerator.Current;76 while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { 77 double original = originalEnumerator.Current; 78 double estimated = estimatedEnumerator.Current; 79 79 accuracyCalculator.Add(original, estimated); 80 80 if (accuracyCalculator.ErrorState != OnlineCalculatorError.None) break; … … 83 83 // check if both enumerators are at the end to make sure both enumerations have the same length 84 84 if (accuracyCalculator.ErrorState == OnlineCalculatorError.None && 85 ( secondEnumerator.MoveNext() || firstEnumerator.MoveNext())) {85 (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) { 86 86 throw new ArgumentException("Number of elements in first and second enumeration doesn't match."); 87 87 } else { -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlineMeanAbsoluteErrorCalculator.cs
r6643 r6961 65 65 #endregion 66 66 67 public static double Calculate(IEnumerable<double> first, IEnumerable<double> second, out OnlineCalculatorError errorState) {68 IEnumerator<double> firstEnumerator = first.GetEnumerator();69 IEnumerator<double> secondEnumerator = second.GetEnumerator();67 public static double Calculate(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues, out OnlineCalculatorError errorState) { 68 IEnumerator<double> originalEnumerator = originalValues.GetEnumerator(); 69 IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator(); 70 70 OnlineMeanAbsoluteErrorCalculator maeCalculator = new OnlineMeanAbsoluteErrorCalculator(); 71 71 72 72 // always move forward both enumerators (do not use short-circuit evaluation!) 73 while ( firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) {74 double estimated = secondEnumerator.Current;75 double original = firstEnumerator.Current;73 while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { 74 double original = originalEnumerator.Current; 75 double estimated = estimatedEnumerator.Current; 76 76 maeCalculator.Add(original, estimated); 77 77 if (maeCalculator.ErrorState != OnlineCalculatorError.None) break; … … 80 80 // check if both enumerators are at the end to make sure both enumerations have the same length 81 81 if (maeCalculator.ErrorState == OnlineCalculatorError.None && 82 ( secondEnumerator.MoveNext() || firstEnumerator.MoveNext())) {82 (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) { 83 83 throw new ArgumentException("Number of elements in first and second enumeration doesn't match."); 84 84 } else { -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlineMeanAbsolutePercentageErrorCalculator.cs
r5945 r6961 67 67 #endregion 68 68 69 public static double Calculate(IEnumerable<double> first, IEnumerable<double> second, out OnlineCalculatorError errorState) {70 IEnumerator<double> firstEnumerator = first.GetEnumerator();71 IEnumerator<double> secondEnumerator = second.GetEnumerator();69 public static double Calculate(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues, out OnlineCalculatorError errorState) { 70 IEnumerator<double> originalEnumerator = originalValues.GetEnumerator(); 71 IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator(); 72 72 OnlineMeanAbsolutePercentageErrorCalculator calculator = new OnlineMeanAbsolutePercentageErrorCalculator(); 73 73 74 74 // always move forward both enumerators (do not use short-circuit evaluation!) 75 while ( firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) {76 double estimated = secondEnumerator.Current;77 double original = firstEnumerator.Current;75 while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { 76 double original = originalEnumerator.Current; 77 double estimated = estimatedEnumerator.Current; 78 78 calculator.Add(original, estimated); 79 79 if (calculator.ErrorState != OnlineCalculatorError.None) break; … … 82 82 // check if both enumerators are at the end to make sure both enumerations have the same length 83 83 if (calculator.ErrorState == OnlineCalculatorError.None && 84 ( secondEnumerator.MoveNext() || firstEnumerator.MoveNext())) {84 (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) { 85 85 throw new ArgumentException("Number of elements in first and second enumeration doesn't match."); 86 86 } else { -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlineMeanSquaredErrorCalculator.cs
r5945 r6961 65 65 #endregion 66 66 67 public static double Calculate(IEnumerable<double> first, IEnumerable<double> second, out OnlineCalculatorError errorState) {68 IEnumerator<double> firstEnumerator = first.GetEnumerator();69 IEnumerator<double> secondEnumerator = second.GetEnumerator();67 public static double Calculate(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues, out OnlineCalculatorError errorState) { 68 IEnumerator<double> originalEnumerator = originalValues.GetEnumerator(); 69 IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator(); 70 70 OnlineMeanSquaredErrorCalculator mseCalculator = new OnlineMeanSquaredErrorCalculator(); 71 71 72 72 // always move forward both enumerators (do not use short-circuit evaluation!) 73 while ( firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) {74 double estimated = secondEnumerator.Current;75 double original = firstEnumerator.Current;73 while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { 74 double original = originalEnumerator.Current; 75 double estimated = estimatedEnumerator.Current; 76 76 mseCalculator.Add(original, estimated); 77 77 if (mseCalculator.ErrorState != OnlineCalculatorError.None) break; … … 80 80 // check if both enumerators are at the end to make sure both enumerations have the same length 81 81 if (mseCalculator.ErrorState == OnlineCalculatorError.None && 82 ( secondEnumerator.MoveNext() || firstEnumerator.MoveNext())) {82 (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) { 83 83 throw new ArgumentException("Number of elements in first and second enumeration doesn't match."); 84 84 } else { -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlineNormalizedMeanSquaredErrorCalculator.cs
r5962 r6961 63 63 #endregion 64 64 65 public static double Calculate(IEnumerable<double> first, IEnumerable<double> second, out OnlineCalculatorError errorState) {66 IEnumerator<double> firstEnumerator = first.GetEnumerator();67 IEnumerator<double> secondEnumerator = second.GetEnumerator();65 public static double Calculate(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues, out OnlineCalculatorError errorState) { 66 IEnumerator<double> originalEnumerator = originalValues.GetEnumerator(); 67 IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator(); 68 68 OnlineNormalizedMeanSquaredErrorCalculator normalizedMSECalculator = new OnlineNormalizedMeanSquaredErrorCalculator(); 69 69 70 70 //needed because otherwise the normalizedMSECalculator is in ErrorState.InsufficientValuesAdded 71 if ( firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) {72 double estimated = secondEnumerator.Current;73 double original = firstEnumerator.Current;71 if (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { 72 double original = originalEnumerator.Current; 73 double estimated = estimatedEnumerator.Current; 74 74 normalizedMSECalculator.Add(original, estimated); 75 75 } 76 76 77 77 // always move forward both enumerators (do not use short-circuit evaluation!) 78 while ( firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) {79 double estimated = secondEnumerator.Current;80 double original = firstEnumerator.Current;78 while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { 79 double estimated = estimatedEnumerator.Current; 80 double original = originalEnumerator.Current; 81 81 normalizedMSECalculator.Add(original, estimated); 82 82 if (normalizedMSECalculator.ErrorState != OnlineCalculatorError.None) break; … … 85 85 // check if both enumerators are at the end to make sure both enumerations have the same length 86 86 if (normalizedMSECalculator.ErrorState == OnlineCalculatorError.None && 87 ( secondEnumerator.MoveNext() || firstEnumerator.MoveNext())) {87 (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) { 88 88 throw new ArgumentException("Number of elements in first and second enumeration doesn't match."); 89 89 } else { -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlinePearsonsRSquaredCalculator.cs
r5945 r6961 74 74 // always move forward both enumerators (do not use short-circuit evaluation!) 75 75 while (firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) { 76 double original = firstEnumerator.Current; 76 77 double estimated = secondEnumerator.Current; 77 double original = firstEnumerator.Current;78 78 rSquaredCalculator.Add(original, estimated); 79 79 if (rSquaredCalculator.ErrorState != OnlineCalculatorError.None) break; -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlineTheilsUStatisticCalculator.cs
r6807 r6961 82 82 #endregion 83 83 84 public static double Calculate(IEnumerable<double> estimatedValues, IEnumerable<double> originalValues, out OnlineCalculatorError errorState) {84 public static double Calculate(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues, out OnlineCalculatorError errorState) { 85 85 IEnumerator<double> originalValuesEnumerator = originalValues.GetEnumerator(); 86 86 IEnumerator<double> estimatedValuesEnumerator = estimatedValues.GetEnumerator();
Note: See TracChangeset
for help on using the changeset viewer.