Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
09/16/11 12:00:36 (13 years ago)
Author:
mkommend
Message:

#1479: Integrated trunk changes.

Location:
branches/GP.Grammar.Editor/HeuristicLab.Problems.DataAnalysis/3.4/Implementation
Files:
7 edited

Legend:

Unmodified
Added
Removed
  • branches/GP.Grammar.Editor/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationProblemData.cs

    r6675 r6784  
    226226      get {
    227227        if (classValues == null) {
    228           classValues = Dataset.GetEnumeratedVariableValues(TargetVariableParameter.Value.Value).Distinct().ToList();
     228          classValues = Dataset.GetDoubleValues(TargetVariableParameter.Value.Value).Distinct().ToList();
    229229          classValues.Sort();
    230230        }
     
    291291    private static IEnumerable<string> CheckVariablesForPossibleTargetVariables(Dataset dataset) {
    292292      int maxSamples = Math.Min(InspectedRowsToDetermineTargets, dataset.Rows);
    293       var validTargetVariables = (from v in dataset.VariableNames
    294                                   let distinctValues = dataset.GetEnumeratedVariableValues(v)
     293      var validTargetVariables = (from v in dataset.DoubleVariables
     294                                  let distinctValues = dataset.GetDoubleValues(v)
    295295                                    .Take(maxSamples)
    296296                                    .Distinct()
     
    410410      dataset.Name = Path.GetFileName(fileName);
    411411
    412       ClassificationProblemData problemData = new ClassificationProblemData(dataset, dataset.VariableNames.Skip(1), dataset.VariableNames.First());
     412      ClassificationProblemData problemData = new ClassificationProblemData(dataset, dataset.DoubleVariables.Skip(1), dataset.DoubleVariables.First());
    413413      problemData.Name = "Data imported from " + Path.GetFileName(fileName);
    414414      return problemData;
  • branches/GP.Grammar.Editor/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolutionBase.cs

    r6675 r6784  
    6767    protected void CalculateResults() {
    6868      double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
    69       double[] originalTrainingClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToArray();
     69      double[] originalTrainingClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToArray();
    7070      double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
    71       double[] originalTestClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes).ToArray();
     71      double[] originalTestClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes).ToArray();
    7272
    7373      OnlineCalculatorError errorState;
  • branches/GP.Grammar.Editor/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationSolutionBase.cs

    r6618 r6784  
    103103    protected void CalculateRegressionResults() {
    104104      double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values
    105       double[] originalTrainingValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToArray();
     105      double[] originalTrainingValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToArray();
    106106      double[] estimatedTestValues = EstimatedTestValues.ToArray(); // cache values
    107       double[] originalTestValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes).ToArray();
     107      double[] originalTestValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes).ToArray();
    108108
    109109      OnlineCalculatorError errorState;
     
    132132      double[] classValues;
    133133      double[] thresholds;
    134       var targetClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
     134      var targetClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
    135135      AccuracyMaximizationThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds);
    136136
     
    141141      double[] classValues;
    142142      double[] thresholds;
    143       var targetClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
     143      var targetClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
    144144      NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds);
    145145
  • branches/GP.Grammar.Editor/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Clustering/ClusteringProblemData.cs

    r5809 r6784  
    2020#endregion
    2121
    22 using System;
    2322using System.Collections.Generic;
    2423using System.IO;
    25 using System.Linq;
    2624using HeuristicLab.Common;
    2725using HeuristicLab.Core;
    28 using HeuristicLab.Data;
    29 using HeuristicLab.Parameters;
    3026using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    3127
     
    10399      dataset.Name = Path.GetFileName(fileName);
    104100
    105       ClusteringProblemData problemData = new ClusteringProblemData(dataset, dataset.VariableNames);
     101      ClusteringProblemData problemData = new ClusteringProblemData(dataset, dataset.DoubleVariables);
    106102      problemData.Name = "Data imported from " + Path.GetFileName(fileName);
    107103      return problemData;
  • branches/GP.Grammar.Editor/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/DataAnalysisProblemData.cs

    r6675 r6784  
    116116      if (allowedInputVariables == null) throw new ArgumentNullException("The allowedInputVariables must not be null.");
    117117
    118       if (allowedInputVariables.Except(dataset.VariableNames).Any())
    119         throw new ArgumentException("All allowed input variables must be present in the dataset.");
     118      if (allowedInputVariables.Except(dataset.DoubleVariables).Any())
     119        throw new ArgumentException("All allowed input variables must be present in the dataset and of type double.");
    120120
    121       var inputVariables = new CheckedItemList<StringValue>(dataset.VariableNames.Select(x => new StringValue(x)));
     121      var inputVariables = new CheckedItemList<StringValue>(dataset.DoubleVariables.Select(x => new StringValue(x)));
    122122      foreach (StringValue x in inputVariables)
    123123        inputVariables.SetItemCheckedState(x, allowedInputVariables.Contains(x.Value));
  • branches/GP.Grammar.Editor/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionProblemData.cs

    r6675 r6784  
    144144      dataset.Name = Path.GetFileName(fileName);
    145145
    146       RegressionProblemData problemData = new RegressionProblemData(dataset, dataset.VariableNames.Skip(1), dataset.VariableNames.First());
     146      RegressionProblemData problemData = new RegressionProblemData(dataset, dataset.DoubleVariables.Skip(1), dataset.DoubleVariables.First());
    147147      problemData.Name = "Data imported from " + Path.GetFileName(fileName);
    148148      return problemData;
  • branches/GP.Grammar.Editor/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionSolutionBase.cs

    r6675 r6784  
    127127        OnlineCalculatorError errorState;
    128128        Add(new Result(TrainingMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the training partition", new DoubleValue()));
    129         double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(EstimatedTrainingValues, ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes), out errorState);
     129        double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(EstimatedTrainingValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes), out errorState);
    130130        TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
    131131      }
     
    134134        OnlineCalculatorError errorState;
    135135        Add(new Result(TestMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the test partition", new DoubleValue()));
    136         double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(EstimatedTestValues, ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes), out errorState);
     136        double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(EstimatedTestValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes), out errorState);
    137137        TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;
    138138      }
     
    142142    protected void CalculateResults() {
    143143      double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values
    144       double[] originalTrainingValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToArray();
     144      double[] originalTrainingValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToArray();
    145145      double[] estimatedTestValues = EstimatedTestValues.ToArray(); // cache values
    146       double[] originalTestValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes).ToArray();
     146      double[] originalTestValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes).ToArray();
    147147
    148148      OnlineCalculatorError errorState;
Note: See TracChangeset for help on using the changeset viewer.