- Timestamp:
- 09/12/11 13:48:31 (14 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionErrorCharacteristicsCurveView.cs
r6642 r6740 164 164 switch (cmbSamples.SelectedItem.ToString()) { 165 165 case TrainingSamples: 166 originalValues = ProblemData.Dataset.Get EnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);166 originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes); 167 167 break; 168 168 case TestSamples: 169 originalValues = ProblemData.Dataset.Get EnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);169 originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes); 170 170 break; 171 171 case AllSamples: 172 originalValues = ProblemData.Dataset.Get EnumeratedVariableValues(ProblemData.TargetVariable);172 originalValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable); 173 173 break; 174 174 default: … … 197 197 198 198 protected IEnumerable<double> GetMeanModelEstimatedValues(IEnumerable<double> originalValues) { 199 double averageTrainingTarget = ProblemData.Dataset.Get EnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).Average();199 double averageTrainingTarget = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).Average(); 200 200 return Enumerable.Repeat(averageTrainingTarget, originalValues.Count()); 201 201 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionEstimatedValuesView.cs
r6642 r6740 88 88 string[,] values = new string[Content.ProblemData.Dataset.Rows, 7]; 89 89 90 double[] target = Content.ProblemData.Dataset.Get VariableValues(Content.ProblemData.TargetVariable);90 double[] target = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray(); 91 91 var estimated = Content.EstimatedValues.GetEnumerator(); 92 92 var estimated_training = Content.EstimatedTrainingValues.GetEnumerator(); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionLineChartView.cs
r6679 r6740 67 67 this.chart.Series[TARGETVARIABLE_SERIES_NAME].ChartType = SeriesChartType.FastLine; 68 68 this.chart.Series[TARGETVARIABLE_SERIES_NAME].Points.DataBindXY(Enumerable.Range(0, Content.ProblemData.Dataset.Rows).ToArray(), 69 Content.ProblemData.Dataset.Get VariableValues(Content.ProblemData.TargetVariable));69 Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray()); 70 70 71 71 this.chart.Series.Add(ESTIMATEDVALUES_TRAINING_SERIES_NAME); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Views/3.4/Regression/RegressionSolutionScatterPlotView.cs
r6679 r6740 130 130 if (this.chart.Series[ALL_SERIES].Points.Count > 0) 131 131 this.chart.Series[ALL_SERIES].Points.DataBindXY(Content.EstimatedValues.ToArray(), "", 132 dataset.Get VariableValues(targetVariableName), "");132 dataset.GetDoubleValues(targetVariableName).ToArray(), ""); 133 133 if (this.chart.Series[TRAINING_SERIES].Points.Count > 0) 134 134 this.chart.Series[TRAINING_SERIES].Points.DataBindXY(Content.EstimatedTrainingValues.ToArray(), "", 135 dataset.Get EnumeratedVariableValues(targetVariableName, Content.ProblemData.TrainingIndizes).ToArray(), "");135 dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TrainingIndizes).ToArray(), ""); 136 136 if (this.chart.Series[TEST_SERIES].Points.Count > 0) 137 137 this.chart.Series[TEST_SERIES].Points.DataBindXY(Content.EstimatedTestValues.ToArray(), "", 138 dataset.Get EnumeratedVariableValues(targetVariableName, Content.ProblemData.TestIndizes).ToArray(), "");139 140 double max = Content.EstimatedTrainingValues.Concat(Content.EstimatedTestValues.Concat(Content.EstimatedValues.Concat(dataset.Get VariableValues(targetVariableName)))).Max();141 double min = Content.EstimatedTrainingValues.Concat(Content.EstimatedTestValues.Concat(Content.EstimatedValues.Concat(dataset.Get VariableValues(targetVariableName)))).Min();138 dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TestIndizes).ToArray(), ""); 139 140 double max = Content.EstimatedTrainingValues.Concat(Content.EstimatedTestValues.Concat(Content.EstimatedValues.Concat(dataset.GetDoubleValues(targetVariableName)))).Max(); 141 double min = Content.EstimatedTrainingValues.Concat(Content.EstimatedTestValues.Concat(Content.EstimatedValues.Concat(dataset.GetDoubleValues(targetVariableName)))).Min(); 142 142 143 143 max = max + 0.2 * Math.Abs(max); … … 177 177 case ALL_SERIES: 178 178 predictedValues = Content.EstimatedValues.ToArray(); 179 targetValues = Content.ProblemData.Dataset.Get VariableValues(targetVariableName);179 targetValues = Content.ProblemData.Dataset.GetDoubleValues(targetVariableName).ToArray(); 180 180 break; 181 181 case TRAINING_SERIES: 182 182 predictedValues = Content.EstimatedTrainingValues.ToArray(); 183 targetValues = Content.ProblemData.Dataset.Get EnumeratedVariableValues(targetVariableName, Content.ProblemData.TrainingIndizes).ToArray();183 targetValues = Content.ProblemData.Dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TrainingIndizes).ToArray(); 184 184 break; 185 185 case TEST_SERIES: 186 186 predictedValues = Content.EstimatedTestValues.ToArray(); 187 targetValues = Content.ProblemData.Dataset.Get EnumeratedVariableValues(targetVariableName, Content.ProblemData.TestIndizes).ToArray();187 targetValues = Content.ProblemData.Dataset.GetDoubleValues(targetVariableName, Content.ProblemData.TestIndizes).ToArray(); 188 188 break; 189 189 }
Note: See TracChangeset
for help on using the changeset viewer.