- Timestamp:
- 09/12/11 13:48:31 (13 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4
- Files:
-
- 8 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectiveMeanSquaredErrorTreeSizeEvaluator.cs
r5942 r6740 54 54 public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows) { 55 55 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 56 IEnumerable<double> originalValues = problemData.Dataset.Get EnumeratedVariableValues(problemData.TargetVariable, rows);56 IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 57 57 IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 58 58 OnlineCalculatorError errorState; -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectivePearsonRSquaredTreeSizeEvaluator.cs
r5942 r6740 33 33 public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows) { 34 34 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 35 IEnumerable<double> originalValues = problemData.Dataset.Get EnumeratedVariableValues(problemData.TargetVariable, rows);35 IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 36 36 OnlineCalculatorError errorState; 37 37 double r2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectiveProblem.cs
r5854 r6740 74 74 private void UpdateEstimationLimits() { 75 75 if (ProblemData.TrainingPartition.Start < ProblemData.TrainingPartition.End) { 76 var targetValues = ProblemData.Dataset.Get VariableValues(ProblemData.TargetVariable, ProblemData.TrainingPartition.Start, ProblemData.TrainingPartition.End);76 var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToList(); 77 77 var mean = targetValues.Average(); 78 78 var range = targetValues.Max() - targetValues.Min(); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator.cs
r5906 r6740 54 54 public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows) { 55 55 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 56 IEnumerable<double> originalValues = problemData.Dataset.Get EnumeratedVariableValues(problemData.TargetVariable, rows);56 IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 57 57 IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 58 58 -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator.cs
r5942 r6740 54 54 public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows) { 55 55 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 56 IEnumerable<double> originalValues = problemData.Dataset.Get EnumeratedVariableValues(problemData.TargetVariable, rows);56 IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 57 57 IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 58 58 OnlineCalculatorError errorState; -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator.cs
r5942 r6740 54 54 public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows) { 55 55 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 56 IEnumerable<double> originalValues = problemData.Dataset.Get EnumeratedVariableValues(problemData.TargetVariable, rows);56 IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 57 57 OnlineCalculatorError errorState; 58 58 double r2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveProblem.cs
r5854 r6740 73 73 private void UpdateEstimationLimits() { 74 74 if (ProblemData.TrainingPartition.Start < ProblemData.TrainingPartition.End) { 75 var targetValues = ProblemData.Dataset.Get VariableValues(ProblemData.TargetVariable, ProblemData.TrainingPartition.Start, ProblemData.TrainingPartition.End);75 var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToList(); 76 76 var mean = targetValues.Average(); 77 77 var range = targetValues.Max() - targetValues.Min(); -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationModel.cs
r6604 r6740 127 127 var rows = problemData.TrainingIndizes; 128 128 var estimatedValues = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset, rows); 129 var targetValues = dataset.Get EnumeratedVariableValues(targetVariable, rows);129 var targetValues = dataset.GetDoubleValues(targetVariable, rows); 130 130 double alpha; 131 131 double beta;
Note: See TracChangeset
for help on using the changeset viewer.