- Timestamp:
- 08/31/11 11:52:11 (13 years ago)
- Location:
- branches/GeneralizedQAP
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/GeneralizedQAP
- Property svn:mergeinfo changed
/trunk/sources (added) merged: 6648-6649,6652-6656,6661-6674,6676-6681,6684
- Property svn:mergeinfo changed
-
branches/GeneralizedQAP/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearDiscriminantAnalysis.cs
r6240 r6685 106 106 107 107 var model = LinearDiscriminantAnalysis.CreateDiscriminantFunctionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter(), problemData, rows); 108 SymbolicDiscriminantFunctionClassificationSolution solution = new SymbolicDiscriminantFunctionClassificationSolution(model, problemData);108 SymbolicDiscriminantFunctionClassificationSolution solution = new SymbolicDiscriminantFunctionClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); 109 109 110 110 return solution; -
branches/GeneralizedQAP/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearRegression.cs
r6555 r6685 110 110 addition.AddSubtree(cNode); 111 111 112 SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter()), problemData);112 SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter()), (IRegressionProblemData)problemData.Clone()); 113 113 solution.Model.Name = "Linear Regression Model"; 114 114 return solution; -
branches/GeneralizedQAP/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitClassification.cs
r6633 r6685 95 95 relClassError = alglib.mnlrelclserror(lm, inputMatrix, nRows); 96 96 97 MultinomialLogitClassificationSolution solution = new MultinomialLogitClassificationSolution( problemData, new MultinomialLogitModel(lm, targetVariable, allowedInputVariables, classValues));97 MultinomialLogitClassificationSolution solution = new MultinomialLogitClassificationSolution((IClassificationProblemData)problemData.Clone(), new MultinomialLogitModel(lm, targetVariable, allowedInputVariables, classValues)); 98 98 return solution; 99 99 }
Note: See TracChangeset
for help on using the changeset viewer.