Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
08/31/11 11:52:11 (13 years ago)
Author:
abeham
Message:

#1628

  • Updated branch from trunk
  • Changed ReferenceEqualityComparer<T> to become a non-generic class (generic implementation probably was only made because of lacking support for co- and contravariance in C# 3.5)
  • Added finished experiment from sample algorithms to the tests
  • Wrote a unit test to instantiate every IDeepCloneable type, clone it and compare the objects in the object graph for equal references
  • Wrote a unit test to load the experiment, clone it and compare again the objects in the object graph
  • Preliminary fix for a potential bug in ThreadSafeLog
  • Preliminary fix for a potential bug in OperatorGraphVisualizationInfo
  • Preliminary fix for a potential bug in Calculator (and added license headers)
  • Preliminary fix for a potential bug in ScrambleMove
Location:
branches/GeneralizedQAP
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • branches/GeneralizedQAP

  • branches/GeneralizedQAP/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearDiscriminantAnalysis.cs

    r6240 r6685  
    106106
    107107      var model = LinearDiscriminantAnalysis.CreateDiscriminantFunctionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter(), problemData, rows);
    108       SymbolicDiscriminantFunctionClassificationSolution solution = new SymbolicDiscriminantFunctionClassificationSolution(model, problemData);
     108      SymbolicDiscriminantFunctionClassificationSolution solution = new SymbolicDiscriminantFunctionClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
    109109
    110110      return solution;
  • branches/GeneralizedQAP/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearRegression.cs

    r6555 r6685  
    110110      addition.AddSubtree(cNode);
    111111
    112       SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter()), problemData);
     112      SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter()), (IRegressionProblemData)problemData.Clone());
    113113      solution.Model.Name = "Linear Regression Model";
    114114      return solution;
  • branches/GeneralizedQAP/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitClassification.cs

    r6633 r6685  
    9595      relClassError = alglib.mnlrelclserror(lm, inputMatrix, nRows);
    9696
    97       MultinomialLogitClassificationSolution solution = new MultinomialLogitClassificationSolution(problemData, new MultinomialLogitModel(lm, targetVariable, allowedInputVariables, classValues));
     97      MultinomialLogitClassificationSolution solution = new MultinomialLogitClassificationSolution((IClassificationProblemData)problemData.Clone(), new MultinomialLogitModel(lm, targetVariable, allowedInputVariables, classValues));
    9898      return solution;
    9999    }
Note: See TracChangeset for help on using the changeset viewer.