Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
08/09/11 11:01:08 (13 years ago)
Author:
mkommend
Message:

#1479: Updated grammar editor branch.

Location:
branches/GP.Grammar.Editor/HeuristicLab.Algorithms.DataAnalysis/3.4
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • branches/GP.Grammar.Editor/HeuristicLab.Algorithms.DataAnalysis/3.4/CrossValidation.cs

    r6618 r6647  
    446446        // clone models
    447447        var ensembleSolution = new ClassificationEnsembleSolution(
    448           solutions.Value.Select(x => cloner.Clone(x.Model)), 
     448          solutions.Value.Select(x => cloner.Clone(x.Model)),
    449449          problemDataClone,
    450450          solutions.Value.Select(x => cloner.Clone(x.ProblemData.TrainingPartition)),
     
    543543        throw new ArgumentException("A cross validation algorithm can only contain DataAnalysisProblems.");
    544544      }
     545      algorithm.Problem.Reset += (x,y) => OnProblemChanged();
    545546      problem = (IDataAnalysisProblem)algorithm.Problem;
    546547      OnProblemChanged();
     
    553554      SamplesStart.Value = 0;
    554555      if (Problem != null) {
    555         Problem.ProblemDataChanged += (object sender, EventArgs e) => OnProblemChanged();
    556556        SamplesEnd.Value = Problem.ProblemData.Dataset.Rows;
    557557
  • branches/GP.Grammar.Editor/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitClassification.cs

    r6618 r6647  
    5656    }
    5757
    58     #region logit regression
     58    #region logit classification
    5959    protected override void Run() {
    6060      double rmsError, relClassError;
    6161      var solution = CreateLogitClassificationSolution(Problem.ProblemData, out rmsError, out relClassError);
    62       Results.Add(new Result(LogitClassificationModelResultName, "The linear regression solution.", solution));
    63       Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the logit regression solution on the training set.", new DoubleValue(rmsError)));
     62      Results.Add(new Result(LogitClassificationModelResultName, "The logit classification solution.", solution));
     63      Results.Add(new Result("Root mean squared error", "The root of the mean of squared errors of the logit regression solution on the training set.", new DoubleValue(rmsError)));
    6464      Results.Add(new Result("Relative classification error", "Relative classification error on the training set (percentage of misclassified cases).", new PercentValue(relClassError)));
    6565    }
  • branches/GP.Grammar.Editor/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitModel.cs

    r6618 r6647  
    6666      targetVariable = original.targetVariable;
    6767      allowedInputVariables = (string[])original.allowedInputVariables.Clone();
    68       this.classValues = (double[])original.classValues.Clone();
     68      classValues = (double[])original.classValues.Clone();
    6969    }
    7070    public MultinomialLogitModel(alglib.logitmodel logitModel, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues)
Note: See TracChangeset for help on using the changeset viewer.