- Timestamp:
- 08/04/11 08:27:35 (13 years ago)
- Location:
- branches/QAPAlgorithms
- Files:
-
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/QAPAlgorithms
- Property svn:mergeinfo changed
/trunk/sources merged: 6612-6614
- Property svn:mergeinfo changed
-
branches/QAPAlgorithms/HeuristicLab.Problems.DataAnalysis
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis merged: 6612-6613
- Property svn:mergeinfo changed
-
branches/QAPAlgorithms/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationEnsembleModel.cs
r6611 r6627 61 61 models.Add(model); 62 62 } 63 public void Remove(IClassificationModel model) { 64 models.Remove(model); 65 } 63 66 64 67 public IEnumerable<IEnumerable<double>> GetEstimatedClassValueVectors(Dataset dataset, IEnumerable<int> rows) { -
branches/QAPAlgorithms/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationEnsembleSolution.cs
r6611 r6627 23 23 using System.Collections.Generic; 24 24 using System.Linq; 25 using HeuristicLab.Collections; 25 26 using HeuristicLab.Common; 26 27 using HeuristicLab.Core; … … 36 37 // [Creatable("Data Analysis")] 37 38 public sealed class ClassificationEnsembleSolution : ClassificationSolution, IClassificationEnsembleSolution { 38 39 39 public new IClassificationEnsembleModel Model { 40 set { base.Model = value; }41 40 get { return (IClassificationEnsembleModel)base.Model; } 41 } 42 43 private readonly ItemCollection<IClassificationSolution> classificationSolutions; 44 public IItemCollection<IClassificationSolution> ClassificationSolutions { 45 get { return classificationSolutions; } 42 46 } 43 47 … … 47 51 private Dictionary<IClassificationModel, IntRange> testPartitions; 48 52 49 50 53 [StorableConstructor] 51 private ClassificationEnsembleSolution(bool deserializing) : base(deserializing) { } 54 private ClassificationEnsembleSolution(bool deserializing) 55 : base(deserializing) { 56 classificationSolutions = new ItemCollection<IClassificationSolution>(); 57 } 58 [StorableHook(HookType.AfterDeserialization)] 59 private void AfterDeserialization() { 60 foreach (var model in Model.Models) { 61 IClassificationProblemData problemData = (IClassificationProblemData)ProblemData.Clone(); 62 problemData.TrainingPartition.Start = trainingPartitions[model].Start; 63 problemData.TrainingPartition.End = trainingPartitions[model].End; 64 problemData.TestPartition.Start = testPartitions[model].Start; 65 problemData.TestPartition.End = testPartitions[model].End; 66 67 classificationSolutions.Add(model.CreateClassificationSolution(problemData)); 68 } 69 RegisterClassificationSolutionsEventHandler(); 70 } 71 52 72 private ClassificationEnsembleSolution(ClassificationEnsembleSolution original, Cloner cloner) 53 73 : base(original, cloner) { … … 60 80 testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value); 61 81 } 62 RecalculateResults(); 63 } 82 83 classificationSolutions = cloner.Clone(original.classificationSolutions); 84 RegisterClassificationSolutionsEventHandler(); 85 } 86 64 87 public ClassificationEnsembleSolution(IEnumerable<IClassificationModel> models, IClassificationProblemData problemData) 65 : base(new ClassificationEnsembleModel(models), new ClassificationEnsembleProblemData(problemData)) { 66 this.name = ItemName; 67 this.description = ItemDescription; 68 trainingPartitions = new Dictionary<IClassificationModel, IntRange>(); 69 testPartitions = new Dictionary<IClassificationModel, IntRange>(); 70 foreach (var model in models) { 71 trainingPartitions[model] = (IntRange)problemData.TrainingPartition.Clone(); 72 testPartitions[model] = (IntRange)problemData.TestPartition.Clone(); 73 } 74 RecalculateResults(); 75 } 88 : this(models, problemData, 89 models.Select(m => (IntRange)problemData.TrainingPartition.Clone()), 90 models.Select(m => (IntRange)problemData.TestPartition.Clone()) 91 ) { } 76 92 77 93 public ClassificationEnsembleSolution(IEnumerable<IClassificationModel> models, IClassificationProblemData problemData, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions) 78 : base(new ClassificationEnsembleModel( models), new ClassificationEnsembleProblemData(problemData)) {94 : base(new ClassificationEnsembleModel(Enumerable.Empty<IClassificationModel>()), new ClassificationEnsembleProblemData(problemData)) { 79 95 this.trainingPartitions = new Dictionary<IClassificationModel, IntRange>(); 80 96 this.testPartitions = new Dictionary<IClassificationModel, IntRange>(); 81 AddModelsAndPartitions(models, 82 trainingPartitions, 83 testPartitions); 84 RecalculateResults(); 97 this.classificationSolutions = new ItemCollection<IClassificationSolution>(); 98 99 List<IClassificationSolution> solutions = new List<IClassificationSolution>(); 100 var modelEnumerator = models.GetEnumerator(); 101 var trainingPartitionEnumerator = trainingPartitions.GetEnumerator(); 102 var testPartitionEnumerator = testPartitions.GetEnumerator(); 103 104 while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) { 105 var p = (IClassificationProblemData)problemData.Clone(); 106 p.TrainingPartition.Start = trainingPartitionEnumerator.Current.Start; 107 p.TrainingPartition.End = trainingPartitionEnumerator.Current.End; 108 p.TestPartition.Start = testPartitionEnumerator.Current.Start; 109 p.TestPartition.End = testPartitionEnumerator.Current.End; 110 111 solutions.Add(modelEnumerator.Current.CreateClassificationSolution(p)); 112 } 113 if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) { 114 throw new ArgumentException(); 115 } 116 117 RegisterClassificationSolutionsEventHandler(); 118 classificationSolutions.AddRange(solutions); 85 119 } 86 120 … … 88 122 return new ClassificationEnsembleSolution(this, cloner); 89 123 } 124 private void RegisterClassificationSolutionsEventHandler() { 125 classificationSolutions.ItemsAdded += new CollectionItemsChangedEventHandler<IClassificationSolution>(classificationSolutions_ItemsAdded); 126 classificationSolutions.ItemsRemoved += new CollectionItemsChangedEventHandler<IClassificationSolution>(classificationSolutions_ItemsRemoved); 127 classificationSolutions.CollectionReset += new CollectionItemsChangedEventHandler<IClassificationSolution>(classificationSolutions_CollectionReset); 128 } 90 129 91 130 protected override void RecalculateResults() { … … 93 132 } 94 133 134 #region Evaluation 95 135 public override IEnumerable<double> EstimatedTrainingClassValues { 96 136 get { … … 166 206 .First(); 167 207 } 168 169 public void AddModelsAndPartitions(IEnumerable<IClassificationSolution> solutions) { 170 foreach (var solution in solutions) { 171 var ensembleSolution = solution as ClassificationEnsembleSolution; 172 if (ensembleSolution != null) { 173 var data = from m in ensembleSolution.Model.Models 174 let train = ensembleSolution.trainingPartitions[m] 175 let test = ensembleSolution.testPartitions[m] 176 select new { m, train, test }; 177 178 foreach (var d in data) { 179 Model.Add(d.m); 180 trainingPartitions[d.m] = (IntRange)d.train.Clone(); 181 testPartitions[d.m] = (IntRange)d.test.Clone(); 182 } 183 } else { 184 Model.Add(solution.Model); 185 trainingPartitions[solution.Model] = (IntRange)solution.ProblemData.TrainingPartition.Clone(); 186 testPartitions[solution.Model] = (IntRange)solution.ProblemData.TestPartition.Clone(); 187 } 188 } 189 208 #endregion 209 210 public void AddClassificationSolutions(IEnumerable<IClassificationSolution> solutions) { 211 classificationSolutions.AddRange(solutions); 212 } 213 public void RemoveClassificationSolutions(IEnumerable<IClassificationSolution> solutions) { 214 classificationSolutions.RemoveRange(solutions); 215 } 216 217 private void classificationSolutions_ItemsAdded(object sender, CollectionItemsChangedEventArgs<IClassificationSolution> e) { 218 foreach (var solution in e.Items) AddClassificationSolution(solution); 190 219 RecalculateResults(); 191 220 } 192 193 private void AddModelsAndPartitions(IEnumerable<IClassificationModel> models, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions) { 194 var modelEnumerator = models.GetEnumerator(); 195 var trainingPartitionEnumerator = trainingPartitions.GetEnumerator(); 196 var testPartitionEnumerator = testPartitions.GetEnumerator(); 197 198 while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) { 199 this.trainingPartitions[modelEnumerator.Current] = (IntRange)trainingPartitionEnumerator.Current.Clone(); 200 this.testPartitions[modelEnumerator.Current] = (IntRange)testPartitionEnumerator.Current.Clone(); 201 } 202 if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) { 203 throw new ArgumentException(); 204 } 221 private void classificationSolutions_ItemsRemoved(object sender, CollectionItemsChangedEventArgs<IClassificationSolution> e) { 222 foreach (var solution in e.Items) RemoveClassificationSolution(solution); 223 RecalculateResults(); 224 } 225 private void classificationSolutions_CollectionReset(object sender, CollectionItemsChangedEventArgs<IClassificationSolution> e) { 226 foreach (var solution in e.OldItems) RemoveClassificationSolution(solution); 227 foreach (var solution in e.Items) AddClassificationSolution(solution); 228 RecalculateResults(); 229 } 230 231 private void AddClassificationSolution(IClassificationSolution solution) { 232 if (Model.Models.Contains(solution.Model)) throw new ArgumentException(); 233 Model.Add(solution.Model); 234 trainingPartitions[solution.Model] = solution.ProblemData.TrainingPartition; 235 testPartitions[solution.Model] = solution.ProblemData.TestPartition; 236 } 237 238 private void RemoveClassificationSolution(IClassificationSolution solution) { 239 if (!Model.Models.Contains(solution.Model)) throw new ArgumentException(); 240 Model.Remove(solution.Model); 241 trainingPartitions.Remove(solution.Model); 242 testPartitions.Remove(solution.Model); 205 243 } 206 244 } -
branches/QAPAlgorithms/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionEnsembleModel.cs
r6611 r6627 74 74 models.Add(model); 75 75 } 76 public void Remove(IRegressionModel model) { 77 models.Remove(model); 78 } 76 79 77 80 public IEnumerable<IEnumerable<double>> GetEstimatedValueVectors(Dataset dataset, IEnumerable<int> rows) { -
branches/QAPAlgorithms/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionEnsembleSolution.cs
r6611 r6627 23 23 using System.Collections.Generic; 24 24 using System.Linq; 25 using HeuristicLab.Collections; 25 26 using HeuristicLab.Common; 26 27 using HeuristicLab.Core; … … 40 41 } 41 42 43 private readonly ItemCollection<IRegressionSolution> regressionSolutions; 44 public IItemCollection<IRegressionSolution> RegressionSolutions { 45 get { return regressionSolutions; } 46 } 47 42 48 [Storable] 43 49 private Dictionary<IRegressionModel, IntRange> trainingPartitions; … … 46 52 47 53 [StorableConstructor] 48 private RegressionEnsembleSolution(bool deserializing) : base(deserializing) { } 54 private RegressionEnsembleSolution(bool deserializing) 55 : base(deserializing) { 56 regressionSolutions = new ItemCollection<IRegressionSolution>(); 57 } 58 [StorableHook(HookType.AfterDeserialization)] 59 private void AfterDeserialization() { 60 foreach (var model in Model.Models) { 61 IRegressionProblemData problemData = (IRegressionProblemData)ProblemData.Clone(); 62 problemData.TrainingPartition.Start = trainingPartitions[model].Start; 63 problemData.TrainingPartition.End = trainingPartitions[model].End; 64 problemData.TestPartition.Start = testPartitions[model].Start; 65 problemData.TestPartition.End = testPartitions[model].End; 66 67 regressionSolutions.Add(model.CreateRegressionSolution(problemData)); 68 } 69 RegisterRegressionSolutionsEventHandler(); 70 } 71 49 72 private RegressionEnsembleSolution(RegressionEnsembleSolution original, Cloner cloner) 50 73 : base(original, cloner) { … … 57 80 testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value); 58 81 } 59 RecalculateResults(); 82 83 regressionSolutions = cloner.Clone(original.regressionSolutions); 84 RegisterRegressionSolutionsEventHandler(); 60 85 } 61 86 62 87 public RegressionEnsembleSolution(IEnumerable<IRegressionModel> models, IRegressionProblemData problemData) 63 : base(new RegressionEnsembleModel(models), new RegressionEnsembleProblemData(problemData)) { 64 trainingPartitions = new Dictionary<IRegressionModel, IntRange>(); 65 testPartitions = new Dictionary<IRegressionModel, IntRange>(); 66 AddModelsAndPartitions(models, 67 from m in models select (IntRange)problemData.TrainingPartition.Clone(), 68 from m in models select (IntRange)problemData.TestPartition.Clone()); 69 RecalculateResults(); 70 } 88 : this(models, problemData, 89 models.Select(m => (IntRange)problemData.TrainingPartition.Clone()), 90 models.Select(m => (IntRange)problemData.TestPartition.Clone()) 91 ) { } 71 92 72 93 public RegressionEnsembleSolution(IEnumerable<IRegressionModel> models, IRegressionProblemData problemData, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions) 73 : base(new RegressionEnsembleModel( models), new RegressionEnsembleProblemData(problemData)) {94 : base(new RegressionEnsembleModel(Enumerable.Empty<IRegressionModel>()), new RegressionEnsembleProblemData(problemData)) { 74 95 this.trainingPartitions = new Dictionary<IRegressionModel, IntRange>(); 75 96 this.testPartitions = new Dictionary<IRegressionModel, IntRange>(); 76 AddModelsAndPartitions(models, trainingPartitions, testPartitions); 77 RecalculateResults(); 97 this.regressionSolutions = new ItemCollection<IRegressionSolution>(); 98 99 List<IRegressionSolution> solutions = new List<IRegressionSolution>(); 100 var modelEnumerator = models.GetEnumerator(); 101 var trainingPartitionEnumerator = trainingPartitions.GetEnumerator(); 102 var testPartitionEnumerator = testPartitions.GetEnumerator(); 103 104 while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) { 105 var p = (IRegressionProblemData)problemData.Clone(); 106 p.TrainingPartition.Start = trainingPartitionEnumerator.Current.Start; 107 p.TrainingPartition.End = trainingPartitionEnumerator.Current.End; 108 p.TestPartition.Start = testPartitionEnumerator.Current.Start; 109 p.TestPartition.End = testPartitionEnumerator.Current.End; 110 111 solutions.Add(modelEnumerator.Current.CreateRegressionSolution(p)); 112 } 113 if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) { 114 throw new ArgumentException(); 115 } 116 117 RegisterRegressionSolutionsEventHandler(); 118 regressionSolutions.AddRange(solutions); 78 119 } 79 120 … … 81 122 return new RegressionEnsembleSolution(this, cloner); 82 123 } 124 private void RegisterRegressionSolutionsEventHandler() { 125 regressionSolutions.ItemsAdded += new CollectionItemsChangedEventHandler<IRegressionSolution>(regressionSolutions_ItemsAdded); 126 regressionSolutions.ItemsRemoved += new CollectionItemsChangedEventHandler<IRegressionSolution>(regressionSolutions_ItemsRemoved); 127 regressionSolutions.CollectionReset += new CollectionItemsChangedEventHandler<IRegressionSolution>(regressionSolutions_CollectionReset); 128 } 83 129 84 130 protected override void RecalculateResults() { … … 86 132 } 87 133 134 #region Evaluation 88 135 public override IEnumerable<double> EstimatedTrainingValues { 89 136 get { … … 154 201 return estimatedValues.DefaultIfEmpty(double.NaN).Average(); 155 202 } 156 157 158 public void AddModelsAndPartitions(IEnumerable<IRegressionSolution> solutions) { 159 foreach (var solution in solutions) { 160 var ensembleSolution = solution as RegressionEnsembleSolution; 161 if (ensembleSolution != null) { 162 var data = from m in ensembleSolution.Model.Models 163 let train = ensembleSolution.trainingPartitions[m] 164 let test = ensembleSolution.testPartitions[m] 165 select new { m, train, test }; 166 167 foreach (var d in data) { 168 Model.Add(d.m); 169 trainingPartitions[d.m] = (IntRange)d.train.Clone(); 170 testPartitions[d.m] = (IntRange)d.test.Clone(); 171 } 172 } else { 173 Model.Add(solution.Model); 174 trainingPartitions[solution.Model] = (IntRange)solution.ProblemData.TrainingPartition.Clone(); 175 testPartitions[solution.Model] = (IntRange)solution.ProblemData.TestPartition.Clone(); 176 } 177 } 178 203 #endregion 204 205 public void AddRegressionSolutions(IEnumerable<IRegressionSolution> solutions) { 206 solutions.OfType<RegressionEnsembleSolution>().SelectMany(ensemble => ensemble.RegressionSolutions); 207 regressionSolutions.AddRange(solutions); 208 } 209 public void RemoveRegressionSolutions(IEnumerable<IRegressionSolution> solutions) { 210 regressionSolutions.RemoveRange(solutions); 211 } 212 213 private void regressionSolutions_ItemsAdded(object sender, CollectionItemsChangedEventArgs<IRegressionSolution> e) { 214 foreach (var solution in e.Items) AddRegressionSolution(solution); 179 215 RecalculateResults(); 180 216 } 181 182 private void AddModelsAndPartitions(IEnumerable<IRegressionModel> models, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions) { 183 var modelEnumerator = models.GetEnumerator(); 184 var trainingPartitionEnumerator = trainingPartitions.GetEnumerator(); 185 var testPartitionEnumerator = testPartitions.GetEnumerator(); 186 187 while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) { 188 this.trainingPartitions[modelEnumerator.Current] = (IntRange)trainingPartitionEnumerator.Current.Clone(); 189 this.testPartitions[modelEnumerator.Current] = (IntRange)testPartitionEnumerator.Current.Clone(); 190 } 191 if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) { 192 throw new ArgumentException(); 193 } 217 private void regressionSolutions_ItemsRemoved(object sender, CollectionItemsChangedEventArgs<IRegressionSolution> e) { 218 foreach (var solution in e.Items) RemoveRegressionSolution(solution); 219 RecalculateResults(); 220 } 221 private void regressionSolutions_CollectionReset(object sender, CollectionItemsChangedEventArgs<IRegressionSolution> e) { 222 foreach (var solution in e.OldItems) RemoveRegressionSolution(solution); 223 foreach (var solution in e.Items) AddRegressionSolution(solution); 224 RecalculateResults(); 225 } 226 227 private void AddRegressionSolution(IRegressionSolution solution) { 228 if (Model.Models.Contains(solution.Model)) throw new ArgumentException(); 229 Model.Add(solution.Model); 230 trainingPartitions[solution.Model] = solution.ProblemData.TrainingPartition; 231 testPartitions[solution.Model] = solution.ProblemData.TestPartition; 232 } 233 234 private void RemoveRegressionSolution(IRegressionSolution solution) { 235 if (!Model.Models.Contains(solution.Model)) throw new ArgumentException(); 236 Model.Remove(solution.Model); 237 trainingPartitions.Remove(solution.Model); 238 testPartitions.Remove(solution.Model); 194 239 } 195 240 } -
branches/QAPAlgorithms/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/Classification/IClassificationEnsembleModel.cs
r6569 r6627 24 24 public interface IClassificationEnsembleModel : IClassificationModel { 25 25 void Add(IClassificationModel model); 26 void Remove(IClassificationModel model); 26 27 IEnumerable<IClassificationModel> Models { get; } 27 28 IEnumerable<IEnumerable<double>> GetEstimatedClassValueVectors(Dataset dataset, IEnumerable<int> rows); -
branches/QAPAlgorithms/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/Classification/IClassificationEnsembleSolution.cs
r6239 r6627 21 21 22 22 using System.Collections.Generic; 23 using HeuristicLab.Core; 23 24 namespace HeuristicLab.Problems.DataAnalysis { 24 25 public interface IClassificationEnsembleSolution : IClassificationSolution { 25 26 new IClassificationEnsembleModel Model { get; } 27 IItemCollection<IClassificationSolution> ClassificationSolutions { get; } 26 28 IEnumerable<IEnumerable<double>> GetEstimatedClassValueVectors(Dataset dataset, IEnumerable<int> rows); 27 29 } -
branches/QAPAlgorithms/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/Regression/IRegressionEnsembleModel.cs
r6569 r6627 24 24 public interface IRegressionEnsembleModel : IRegressionModel { 25 25 void Add(IRegressionModel model); 26 void Remove(IRegressionModel model); 26 27 IEnumerable<IRegressionModel> Models { get; } 27 28 IEnumerable<IEnumerable<double>> GetEstimatedValueVectors(Dataset dataset, IEnumerable<int> rows); -
branches/QAPAlgorithms/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/Regression/IRegressionEnsembleSolution.cs
r6233 r6627 21 21 22 22 using System.Collections.Generic; 23 using HeuristicLab.Core; 23 24 namespace HeuristicLab.Problems.DataAnalysis { 24 25 public interface IRegressionEnsembleSolution : IRegressionSolution { 25 26 new IRegressionEnsembleModel Model { get; } 27 IItemCollection<IRegressionSolution> RegressionSolutions { get; } 26 28 IEnumerable<IEnumerable<double>> GetEstimatedValueVectors(Dataset dataset, IEnumerable<int> rows); 27 29 }
Note: See TracChangeset
for help on using the changeset viewer.