Changeset 6586 for branches/QAPAlgorithms
- Timestamp:
- 07/22/11 12:03:36 (13 years ago)
- Location:
- branches/QAPAlgorithms
- Files:
-
- 1 added
- 1 deleted
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/QAPAlgorithms/HeuristicLab.Problems.QuadraticAssignment.Algorithms/3.3/HeuristicLab.Problems.QuadraticAssignment.Algorithms-3.3.csproj
r6569 r6586 107 107 </ItemGroup> 108 108 <ItemGroup> 109 <Compile Include=" QAPRobustTabooSeachOperator.cs" />109 <Compile Include="RobustTabooSeachOperator.cs" /> 110 110 <Compile Include="RobustTabooSearch.cs" /> 111 111 <None Include="Plugin.cs.frame" /> -
branches/QAPAlgorithms/HeuristicLab.Problems.QuadraticAssignment.Algorithms/3.3/RobustTabooSearch.cs
r6351 r6586 26 26 using HeuristicLab.Core; 27 27 using HeuristicLab.Data; 28 using HeuristicLab.Encodings.PermutationEncoding;29 28 using HeuristicLab.Operators; 30 29 using HeuristicLab.Optimization; … … 35 34 36 35 namespace HeuristicLab.Problems.QuadraticAssignment.Algorithms { 37 [Item("Robust Taboo Search (QAP)", "The algorithm is described in Taillard, E. 1991. Robust Taboo Search for the Quadratic Assignment Problem. Parallel Computing 17, pp. 443-455.")]36 [Item("Robust Taboo Search", "The algorithm is described in Taillard, E. 1991. Robust Taboo Search for the Quadratic Assignment Problem. Parallel Computing 17, pp. 443-455.")] 38 37 [Creatable("Algorithms")] 39 38 [StorableClass] 40 public sealed class RobustTabooSearch QAP: HeuristicOptimizationEngineAlgorithm, IStorableContent {39 public sealed class RobustTabooSearch : HeuristicOptimizationEngineAlgorithm, IStorableContent { 41 40 public string Filename { get; set; } 42 41 … … 69 68 private FixedValueParameter<IntValue> MaximumTabuTenureParameter { 70 69 get { return (FixedValueParameter<IntValue>)Parameters["MaximumTabuTenure"]; } 71 }72 private FixedValueParameter<IntValue> TabuTenureAdaptionIntervalParameter {73 get { return (FixedValueParameter<IntValue>)Parameters["TabuTenureAdaptionInterval"]; }74 70 } 75 71 private FixedValueParameter<BoolValue> UseAlternativeAspirationParameter { … … 102 98 set { MaximumTabuTenureParameter.Value.Value = value; } 103 99 } 104 public int TabuTenureAdaptionInterval {105 get { return TabuTenureAdaptionIntervalParameter.Value.Value; }106 set { TabuTenureAdaptionIntervalParameter.Value.Value = value; }107 }108 100 public bool UseAlternativeAspiration { 109 101 get { return UseAlternativeAspirationParameter.Value.Value; } … … 119 111 private SolutionsCreator solutionsCreator; 120 112 [Storable] 121 private QAPRobustTabooSeachOperator mainOperator;113 private RobustTabooSeachOperator mainOperator; 122 114 [Storable] 123 115 private BestAverageWorstQualityAnalyzer qualityAnalyzer; 124 116 125 117 [StorableConstructor] 126 private RobustTabooSearch QAP(bool deserializing) : base(deserializing) { }127 private RobustTabooSearch QAP(RobustTabooSearchQAPoriginal, Cloner cloner)118 private RobustTabooSearch(bool deserializing) : base(deserializing) { } 119 private RobustTabooSearch(RobustTabooSearch original, Cloner cloner) 128 120 : base(original, cloner) { 129 121 solutionsCreator = cloner.Clone(original.solutionsCreator); 130 122 mainOperator = cloner.Clone(original.mainOperator); 131 123 qualityAnalyzer = cloner.Clone(original.qualityAnalyzer); 132 } 133 public RobustTabooSearchQAP() { 124 RegisterEventHandlers(); 125 } 126 public RobustTabooSearch() { 134 127 Parameters.Add(new FixedValueParameter<MultiAnalyzer>("Analyzer", "The analyzers that are applied after each iteration.", new MultiAnalyzer())); 135 128 Parameters.Add(new FixedValueParameter<IntValue>("Seed", "The seed value of the random number generator.", new IntValue(0))); … … 138 131 Parameters.Add(new FixedValueParameter<IntValue>("MinimumTabuTenure", "The minimum tabu tenure.", new IntValue(20))); 139 132 Parameters.Add(new FixedValueParameter<IntValue>("MaximumTabuTenure", "The maximum tabu tenure.", new IntValue(10))); 140 Parameters.Add(new FixedValueParameter<IntValue>("TabuTenureAdaptionInterval", "The amount of iterations that have to pass before the tabu tenure is adapted.", new IntValue(60)));141 133 Parameters.Add(new FixedValueParameter<BoolValue>("UseAlternativeAspiration", "True if the alternative aspiration condition should be used that takes moves that have not been made for some time above others.", new BoolValue(false))); 142 134 Parameters.Add(new FixedValueParameter<IntValue>("AlternativeAspirationTenure", "The time t that a move will be remembered for the alternative aspiration condition.", new IntValue(10000))); 135 Parameters.Add(new FixedValueParameter<BoolValue>("TerminateOnOptimalSolution", "True when the algorithm should stop if it reached a quality equal or smaller to the BestKnownQuality.", new BoolValue(true))); 143 136 144 137 qualityAnalyzer = new BestAverageWorstQualityAnalyzer(); … … 153 146 randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name; 154 147 155 OperatorGraph.InitialOperator = randomCreator;156 157 148 VariableCreator variableCreator = new VariableCreator(); 158 149 variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Iterations", new IntValue(0))); 159 variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("TabuTenure", new IntValue(0)));160 randomCreator.Successor = variableCreator;161 150 162 151 ResultsCollector resultsCollector = new ResultsCollector(); 163 152 resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Iterations", "The actual iteration.")); 164 resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("TabuTenure", "The actual tabu tenure."));165 variableCreator.Successor = resultsCollector;166 153 167 154 solutionsCreator = new SolutionsCreator(); 168 155 solutionsCreator.NumberOfSolutions = new IntValue(1); 169 resultsCollector.Successor = solutionsCreator;170 156 171 157 Placeholder analyzer = new Placeholder(); 172 158 analyzer.Name = "(Analyzer)"; 173 159 analyzer.OperatorParameter.ActualName = AnalyzerParameter.Name; 174 solutionsCreator.Successor = analyzer;175 160 176 161 UniformSubScopesProcessor ussp = new UniformSubScopesProcessor(); 177 analyzer.Successor = ussp; 178 179 mainOperator = new QAPRobustTabooSeachOperator(); 162 163 mainOperator = new RobustTabooSeachOperator(); 180 164 mainOperator.AlternativeAspirationTenureParameter.ActualName = AlternativeAspirationTenureParameter.Name; 181 165 mainOperator.BestQualityParameter.ActualName = "BestSoFarQuality"; 182 166 mainOperator.IterationsParameter.ActualName = "Iterations"; 183 mainOperator.L ongTermMemoryParameter.ActualName = "LongTermMemory";167 mainOperator.LastMoveParameter.ActualName = "LastMove"; 184 168 mainOperator.MaximumIterationsParameter.ActualName = MaximumIterationsParameter.Name; 185 169 mainOperator.MaximumTabuTenureParameter.ActualName = MaximumTabuTenureParameter.Name; 186 170 mainOperator.MinimumTabuTenureParameter.ActualName = MinimumTabuTenureParameter.Name; 171 mainOperator.MoveQualityMatrixParameter.ActualName = "MoveQualityMatrix"; 187 172 mainOperator.RandomParameter.ActualName = "Random"; 173 mainOperator.ResultsParameter.ActualName = "Results"; 188 174 mainOperator.ShortTermMemoryParameter.ActualName = "ShortTermMemory"; 189 mainOperator.TabuTenureAdaptionIntervalParameter.ActualName = TabuTenureAdaptionIntervalParameter.Name;190 mainOperator.TabuTenureParameter.ActualName = "TabuTenure";191 175 mainOperator.UseAlternativeAspirationParameter.ActualName = UseAlternativeAspirationParameter.Name; 192 ussp.Operator = mainOperator; 176 177 ConditionalBranch qualityStopBranch = new ConditionalBranch(); 178 qualityStopBranch.Name = "Terminate on optimal quality?"; 179 qualityStopBranch.ConditionParameter.ActualName = "TerminateOnOptimalSolution"; 180 181 Comparator qualityComparator = new Comparator(); 182 qualityComparator.Comparison = new Comparison(ComparisonType.Greater); 183 qualityComparator.LeftSideParameter.ActualName = "BestQuality"; 184 qualityComparator.RightSideParameter.ActualName = "BestKnownQuality"; 185 qualityComparator.ResultParameter.ActualName = "ContinueByQuality"; 186 187 ConditionalBranch continueByQualityBranch = new ConditionalBranch(); 188 continueByQualityBranch.ConditionParameter.ActualName = "ContinueByQuality"; 193 189 194 190 IntCounter iterationsCounter = new IntCounter(); 195 191 iterationsCounter.ValueParameter.ActualName = "Iterations"; 196 192 iterationsCounter.Increment = new IntValue(1); 197 ussp.Successor = iterationsCounter;198 193 199 194 Comparator comparator = new Comparator(); … … 203 198 comparator.Comparison = new Comparison(ComparisonType.Less); 204 199 comparator.ResultParameter.ActualName = "ContinueByIteration"; 200 201 ConditionalBranch continueByIterationBranch = new ConditionalBranch(); 202 continueByIterationBranch.ConditionParameter.ActualName = "ContinueByIteration"; 203 204 OperatorGraph.InitialOperator = randomCreator; 205 randomCreator.Successor = variableCreator; 206 variableCreator.Successor = resultsCollector; 207 resultsCollector.Successor = solutionsCreator; 208 solutionsCreator.Successor = analyzer; 209 analyzer.Successor = ussp; 210 ussp.Operator = mainOperator; 211 ussp.Successor = qualityStopBranch; 212 qualityStopBranch.FalseBranch = iterationsCounter; 213 qualityStopBranch.TrueBranch = qualityComparator; 214 qualityStopBranch.Successor = null; 215 qualityComparator.Successor = continueByQualityBranch; 216 continueByQualityBranch.TrueBranch = iterationsCounter; 217 continueByQualityBranch.FalseBranch = null; 218 continueByQualityBranch.Successor = null; 205 219 iterationsCounter.Successor = comparator; 206 207 ConditionalBranch branch = new ConditionalBranch(); 208 branch.ConditionParameter.ActualName = "ContinueByIteration"; 209 branch.TrueBranch = analyzer; 210 comparator.Successor = branch; 220 comparator.Successor = continueByIterationBranch; 221 continueByIterationBranch.TrueBranch = analyzer; 222 continueByIterationBranch.FalseBranch = null; 223 continueByIterationBranch.Successor = null; 211 224 212 225 RegisterEventHandlers(); … … 214 227 215 228 public override IDeepCloneable Clone(Cloner cloner) { 216 return new RobustTabooSearch QAP(this, cloner);229 return new RobustTabooSearch(this, cloner); 217 230 } 218 231 … … 246 259 } 247 260 261 private void UseAlternativeAspirationParameter_ValueChanged(object sender, EventArgs e) { 262 UpdateAlternativeAspirationTenure(); 263 } 264 265 private void AlternativeAspirationTenureParameter_ValueChanged(object sender, EventArgs e) { 266 if (AlternativeAspirationTenure < MaximumIterations 267 && !UseAlternativeAspiration) { 268 UseAlternativeAspirationParameter.Value.ValueChanged -= new EventHandler(UseAlternativeAspirationParameter_ValueChanged); 269 UseAlternativeAspiration = true; 270 UseAlternativeAspirationParameter.Value.ValueChanged += new EventHandler(UseAlternativeAspirationParameter_ValueChanged); 271 } else if (AlternativeAspirationTenure >= MaximumIterations 272 && UseAlternativeAspiration) { 273 UseAlternativeAspirationParameter.Value.ValueChanged -= new EventHandler(UseAlternativeAspirationParameter_ValueChanged); 274 UseAlternativeAspiration = false; 275 UseAlternativeAspirationParameter.Value.ValueChanged += new EventHandler(UseAlternativeAspirationParameter_ValueChanged); 276 } 277 } 278 279 [StorableHook(HookType.AfterDeserialization)] 280 private void AfterDeserialization() { 281 RegisterEventHandlers(); 282 } 283 248 284 private void RegisterEventHandlers() { 249 if (Problem != null) { 250 Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged); 251 } 285 UseAlternativeAspirationParameter.Value.ValueChanged += new EventHandler(UseAlternativeAspirationParameter_ValueChanged); 286 AlternativeAspirationTenureParameter.Value.ValueChanged += new EventHandler(AlternativeAspirationTenureParameter_ValueChanged); 287 } 288 289 protected override void RegisterProblemEvents() { 290 base.RegisterProblemEvents(); 291 Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged); 292 } 293 294 protected override void DeregisterProblemEvents() { 295 Problem.Evaluator.QualityParameter.ActualNameChanged -= new EventHandler(Evaluator_QualityParameter_ActualNameChanged); 296 base.DeregisterProblemEvents(); 252 297 } 253 298 254 299 public override void Start() { 255 300 if (ExecutionState == ExecutionState.Prepared) { 256 DoubleMatrix shortTermMemory = new DoubleMatrix(Problem.Weights.Rows, Problem.Weights.Rows); 257 DoubleMatrix longTermMemory = new DoubleMatrix(Problem.Weights.Rows, Problem.Weights.Rows); 258 for (int i = 0; i < shortTermMemory.Rows; i++) 259 for (int j = 0; j < shortTermMemory.Rows; j++) { 260 shortTermMemory[i, j] = -1; 261 longTermMemory[i, j] = -1; 301 int dim = Problem.Weights.Rows; 302 IntMatrix shortTermMemory = new IntMatrix(dim, dim); 303 for (int i = 0; i < dim; i++) 304 for (int j = 0; j < dim; j++) { 305 shortTermMemory[i, j] = -(dim * (i + 1) + j + 1); 262 306 } 263 307 264 308 GlobalScope.Variables.Add(new Variable("ShortTermMemory", shortTermMemory)); 265 GlobalScope.Variables.Add(new Variable(" LongTermMemory", longTermMemory));309 GlobalScope.Variables.Add(new Variable("MoveQualityMatrix", new DoubleMatrix(dim, dim))); 266 310 } 267 311 base.Start(); … … 271 315 MinimumTabuTenure = (int)(0.9 * Problem.Weights.Rows); 272 316 MaximumTabuTenure = (int)(1.1 * Problem.Weights.Rows); 273 TabuTenureAdaptionInterval = 2 * MaximumTabuTenure; 317 UpdateAlternativeAspirationTenure(); 318 } 319 320 private void UpdateAlternativeAspirationTenure() { 321 if (UseAlternativeAspiration) { 322 AlternativeAspirationTenure = Problem.Weights.Rows * Problem.Weights.Rows / 2; 323 } else { 324 AlternativeAspirationTenure = int.MaxValue; 325 } 274 326 } 275 327 … … 277 329 AnalyzerParameter.Value.Operators.Clear(); 278 330 if (Problem != null) { 279 foreach (IAnalyzer analyzer in ((IProblem)Problem).Operators.OfType<IAnalyzer>()) 280 if (!(analyzer is AlleleFrequencyAnalyzer<Permutation>) && !(analyzer is PopulationDiversityAnalyzer<Permutation>)) 281 AnalyzerParameter.Value.Operators.Add(analyzer); 331 foreach (IAnalyzer analyzer in ((IProblem)Problem).Operators.OfType<IAnalyzer>()) { 332 AnalyzerParameter.Value.Operators.Add(analyzer); 333 if (!(analyzer is BestQAPSolutionAnalyzer)) 334 AnalyzerParameter.Value.Operators.SetItemCheckedState(analyzer, false); 335 } 282 336 } 283 337 AnalyzerParameter.Value.Operators.Add(qualityAnalyzer); -
branches/QAPAlgorithms/HeuristicLab.Problems.QuadraticAssignment/3.3/Evaluators/QAPSwap2MoveEvaluator.cs
r5933 r6586 49 49 } 50 50 51 /// <summary> 52 /// Calculates the quality of the move <paramref name="move"/> by evaluating the changes. 53 /// The runtime complexity of this method is O(N) with N being the size of the permutation. 54 /// </summary> 55 /// <param name="assignment">The current permutation.</param> 56 /// <param name="move">The move that is to be evaluated if it was applied to the current permutation.</param> 57 /// <param name="weights">The weights matrix.</param> 58 /// <param name="distances">The distances matrix.</param> 59 /// <returns>The relative change in quality if <paramref name="move"/> was applied to <paramref name="assignment"/>.</returns> 51 60 public static double Apply(Permutation assignment, Swap2Move move, DoubleMatrix weights, DoubleMatrix distances) { 52 61 if (move.Index1 == move.Index2) return 0; … … 73 82 } 74 83 84 /// <summary> 85 /// Is able to compute the move qualities faster O(1) in some cases if it knows the quality of 86 /// performing the move <paramref name="move"/> previously. In other cases it performs a 87 /// standard move quality calculation with runtime complexity O(N). 88 /// </summary> 89 /// <remarks> 90 /// The number of cases that the calculation can be performed faster grows with N^2 91 /// while the number of cases which require a larger recalculation grows linearly with N. 92 /// Larger problem instances thus benefit from this faster method to a larger degree. 93 /// </remarks> 94 /// <param name="assignment">The current permutation.</param> 95 /// <param name="move">The current move that is to be evaluated.</param> 96 /// <param name="previousQuality">The quality of that move as evaluated for the previous permutation.</param> 97 /// <param name="weights">The weigths matrix.</param> 98 /// <param name="distances">The distances matrix.</param> 99 /// <param name="lastMove">The move that was applied to transform the permutation from the previous to the current one.</param> 100 /// <returns>The relative change in quality if <paramref name="move"/> was applied to <paramref name="assignment"/>.</returns> 101 public static double Apply(Permutation assignment, Swap2Move move, double previousQuality, 102 DoubleMatrix weights, DoubleMatrix distances, Swap2Move lastMove) { 103 bool overlapsLastMove = move.Index1 == lastMove.Index1 104 || move.Index2 == lastMove.Index1 105 || move.Index1 == lastMove.Index2 106 || move.Index2 == lastMove.Index2; 107 108 if (!overlapsLastMove) { 109 int r = lastMove.Index1, u = move.Index1, s = lastMove.Index2, v = move.Index2; 110 int pR = assignment[lastMove.Index1], pU = assignment[move.Index1], pS = assignment[lastMove.Index2], pV = assignment[move.Index2]; 111 112 return previousQuality 113 + (weights[r, u] - weights[r, v] + weights[s, v] - weights[s, u]) 114 * (distances[pS, pU] - distances[pS, pV] + distances[pR, pV] - distances[pR, pU]) 115 + (weights[u, r] - weights[v, r] + weights[v, s] - weights[u, s]) 116 * (distances[pU, pS] - distances[pV, pS] + distances[pV, pR] - distances[pU, pR]); 117 } else { 118 return Apply(assignment, move, weights, distances); 119 } 120 } 121 75 122 public override IOperation Apply() { 76 123 Swap2Move move = Swap2MoveParameter.ActualValue; -
branches/QAPAlgorithms/HeuristicLab.Problems.QuadraticAssignment/3.3/Tests/QAPMoveEvaluatorTest.cs
r5933 r6586 60 60 for (int i = 0; i < ProblemSize - 1; i++) { 61 61 for (int j = i + 1; j < ProblemSize; j++) { 62 symmetricDistances[i, j] = random.Next(ProblemSize );62 symmetricDistances[i, j] = random.Next(ProblemSize * 100); 63 63 symmetricDistances[j, i] = symmetricDistances[i, j]; 64 symmetricWeights[i, j] = random.Next(ProblemSize );64 symmetricWeights[i, j] = random.Next(ProblemSize * 100); 65 65 symmetricWeights[j, i] = symmetricWeights[i, j]; 66 asymmetricDistances[i, j] = random.Next(ProblemSize );67 asymmetricDistances[j, i] = random.Next(ProblemSize );68 asymmetricWeights[i, j] = random.Next(ProblemSize );69 asymmetricWeights[j, i] = random.Next(ProblemSize );70 nonZeroDiagonalDistances[i, j] = random.Next(ProblemSize );71 nonZeroDiagonalDistances[j, i] = random.Next(ProblemSize );72 nonZeroDiagonalWeights[i, j] = random.Next(ProblemSize );73 nonZeroDiagonalWeights[j, i] = random.Next(ProblemSize );66 asymmetricDistances[i, j] = random.Next(ProblemSize * 100); 67 asymmetricDistances[j, i] = random.Next(ProblemSize * 100); 68 asymmetricWeights[i, j] = random.Next(ProblemSize * 100); 69 asymmetricWeights[j, i] = random.Next(ProblemSize * 100); 70 nonZeroDiagonalDistances[i, j] = random.Next(ProblemSize * 100); 71 nonZeroDiagonalDistances[j, i] = random.Next(ProblemSize * 100); 72 nonZeroDiagonalWeights[i, j] = random.Next(ProblemSize * 100); 73 nonZeroDiagonalWeights[j, i] = random.Next(ProblemSize * 100); 74 74 } 75 nonZeroDiagonalDistances[i, i] = random.Next(ProblemSize );76 nonZeroDiagonalWeights[i, i] = random.Next(ProblemSize );75 nonZeroDiagonalDistances[i, i] = random.Next(ProblemSize * 100); 76 nonZeroDiagonalWeights[i, i] = random.Next(ProblemSize * 100); 77 77 } 78 78 int index = random.Next(ProblemSize); 79 79 if (nonZeroDiagonalDistances[index, index] == 0) 80 nonZeroDiagonalDistances[index, index] = random.Next(1, ProblemSize );80 nonZeroDiagonalDistances[index, index] = random.Next(1, ProblemSize * 100); 81 81 index = random.Next(ProblemSize); 82 82 if (nonZeroDiagonalWeights[index, index] == 0) 83 nonZeroDiagonalWeights[index, index] = random.Next(1, ProblemSize );83 nonZeroDiagonalWeights[index, index] = random.Next(1, ProblemSize * 100); 84 84 assignment = new Permutation(PermutationTypes.Absolute, ProblemSize, random); 85 } 86 87 [TestMethod] 88 public void Swap2MoveEvaluatorFastEvaluationTest() { 89 90 for (int i = 0; i < 500; i++) { 91 Swap2Move lastMove = new Swap2Move(random.Next(ProblemSize), random.Next(ProblemSize)); 92 Permutation prevAssignment = (Permutation)assignment.Clone(); 93 Swap2Manipulator.Apply(assignment, lastMove.Index1, lastMove.Index2); 94 Permutation nextAssignment = (Permutation)assignment.Clone(); 95 Swap2Move currentMove = new Swap2Move(random.Next(ProblemSize), random.Next(ProblemSize)); 96 Swap2Manipulator.Apply(nextAssignment, currentMove.Index1, currentMove.Index2); 97 98 double moveBefore = QAPSwap2MoveEvaluator.Apply(prevAssignment, currentMove, symmetricWeights, symmetricDistances); 99 double moveAfter = QAPSwap2MoveEvaluator.Apply(assignment, currentMove, 100 moveBefore, symmetricWeights, symmetricDistances, lastMove); 101 double before = QAPEvaluator.Apply(assignment, symmetricWeights, symmetricDistances); 102 double after = QAPEvaluator.Apply(nextAssignment, symmetricWeights, symmetricDistances); 103 104 Assert.IsTrue(moveAfter.IsAlmost(after - before), "Failed on symmetric matrices: " + Environment.NewLine 105 + "Quality changed from " + before + " to " + after + " (" + (after - before).ToString() + "), but move quality change was " + moveAfter + "."); 106 107 moveBefore = QAPSwap2MoveEvaluator.Apply(prevAssignment, currentMove, asymmetricWeights, asymmetricDistances); 108 moveAfter = QAPSwap2MoveEvaluator.Apply(assignment, currentMove, 109 moveBefore, asymmetricWeights, asymmetricDistances, lastMove); 110 before = QAPEvaluator.Apply(assignment, asymmetricWeights, asymmetricDistances); 111 after = QAPEvaluator.Apply(nextAssignment, asymmetricWeights, asymmetricDistances); 112 113 Assert.IsTrue(moveAfter.IsAlmost(after - before), "Failed on asymmetric matrices: " + Environment.NewLine 114 + "Quality changed from " + before + " to " + after + " (" + (after - before).ToString() + "), but move quality change was " + moveAfter + "."); 115 116 moveBefore = QAPSwap2MoveEvaluator.Apply(prevAssignment, currentMove, nonZeroDiagonalWeights, nonZeroDiagonalDistances); 117 moveAfter = QAPSwap2MoveEvaluator.Apply(assignment, currentMove, 118 moveBefore, nonZeroDiagonalWeights, nonZeroDiagonalDistances, lastMove); 119 before = QAPEvaluator.Apply(assignment, nonZeroDiagonalWeights, nonZeroDiagonalDistances); 120 after = QAPEvaluator.Apply(nextAssignment, nonZeroDiagonalWeights, nonZeroDiagonalDistances); 121 122 Assert.IsTrue(moveAfter.IsAlmost(after - before), "Failed on non-zero diagonal matrices: " + Environment.NewLine 123 + "Quality changed from " + before + " to " + after + " (" + (after - before).ToString() + "), but move quality change was " + moveAfter + "."); 124 } 85 125 } 86 126
Note: See TracChangeset
for help on using the changeset viewer.