Changeset 6578 for trunk/sources
- Timestamp:
- 07/21/11 11:11:05 (13 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkRegression.cs
r6577 r6578 42 42 [StorableClass] 43 43 public sealed class NeuralNetworkRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> { 44 private const string DecayParameterName = "Decay"; 45 private const string HiddenLayersParameterName = "HiddenLayers"; 46 private const string NodesInFirstHiddenLayerParameterName = "NodesInFirstHiddenLayer"; 47 private const string NodesInSecondHiddenLayerParameterName = "NodesInSecondHiddenLayer"; 48 private const string RestartsParameterName = "Restarts"; 44 49 private const string NeuralNetworkRegressionModelResultName = "Neural network regression solution"; 50 51 #region parameter properties 52 public IFixedValueParameter<DoubleValue> DecayParameter { 53 get { return (IFixedValueParameter<DoubleValue>)Parameters[DecayParameterName]; } 54 } 55 public ConstrainedValueParameter<IntValue> HiddenLayersParameter { 56 get { return (ConstrainedValueParameter<IntValue>)Parameters[HiddenLayersParameterName]; } 57 } 58 public IFixedValueParameter<IntValue> NodesInFirstHiddenLayerParameter { 59 get { return (IFixedValueParameter<IntValue>)Parameters[NodesInFirstHiddenLayerParameterName]; } 60 } 61 public IFixedValueParameter<IntValue> NodesInSecondHiddenLayerParameter { 62 get { return (IFixedValueParameter<IntValue>)Parameters[NodesInSecondHiddenLayerParameterName]; } 63 } 64 public IFixedValueParameter<IntValue> RestartsParameter { 65 get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; } 66 } 67 #endregion 68 69 #region properties 70 public double Decay { 71 get { return DecayParameter.Value.Value; } 72 set { 73 if (value < 0.001 || value > 100) throw new ArgumentException("The decay parameter should be set to a value between 0.001 and 100.", "Decay"); 74 DecayParameter.Value.Value = value; 75 } 76 } 77 public int HiddenLayers { 78 get { return HiddenLayersParameter.Value.Value; } 79 set { 80 if (value < 0 || value > 2) throw new ArgumentException("The number of hidden layers should be set to 0, 1, or 2.", "HiddenLayers"); 81 HiddenLayersParameter.Value = (from v in HiddenLayersParameter.ValidValues 82 where v.Value == value 83 select v) 84 .Single(); 85 } 86 } 87 public int NodesInFirstHiddenLayer { 88 get { return NodesInFirstHiddenLayerParameter.Value.Value; } 89 set { 90 if (value < 1) throw new ArgumentException("The number of nodes in the first hidden layer must be at least one.", "NodesInFirstHiddenLayer"); 91 NodesInFirstHiddenLayerParameter.Value.Value = value; 92 } 93 } 94 public int NodesInSecondHiddenLayer { 95 get { return NodesInSecondHiddenLayerParameter.Value.Value; } 96 set { 97 if (value < 1) throw new ArgumentException("The number of nodes in the first second layer must be at least one.", "NodesInSecondHiddenLayer"); 98 NodesInSecondHiddenLayerParameter.Value.Value = value; 99 } 100 } 101 public int Restarts { 102 get { return RestartsParameter.Value.Value; } 103 set { 104 if (value < 0) throw new ArgumentException("The number of restarts must be positive.", "Restarts"); 105 RestartsParameter.Value.Value = value; 106 } 107 } 108 #endregion 109 110 45 111 [StorableConstructor] 46 112 private NeuralNetworkRegression(bool deserializing) : base(deserializing) { } … … 50 116 public NeuralNetworkRegression() 51 117 : base() { 118 var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] { new IntValue(0), new IntValue(1), new IntValue(2) }); 119 var selectedHiddenLayerValue = (from v in validHiddenLayerValues 120 where v.Value == 1 121 select v) 122 .Single(); 123 Parameters.Add(new FixedValueParameter<DoubleValue>(DecayParameterName, "The decay parameter for the training phase of the neural network. This parameter determines the strengh of regularization and should be set to a value between 0.001 (weak regularization) to 100 (very strong regularization). The correct value should be determined via cross-validation.", new DoubleValue(1))); 124 Parameters.Add(new ConstrainedValueParameter<IntValue>(HiddenLayersParameterName, "The number of hidden layers for the neural network (0, 1, or 2)", validHiddenLayerValues, selectedHiddenLayerValue)); 125 Parameters.Add(new FixedValueParameter<IntValue>(NodesInFirstHiddenLayerParameterName, "The number of nodes in the first hidden layer. This value is not used if the number of hidden layers is zero.", new IntValue(10))); 126 Parameters.Add(new FixedValueParameter<IntValue>(NodesInSecondHiddenLayerParameterName, "The number of nodes in the second hidden layer. This value is not used if the number of hidden layers is zero or one.", new IntValue(10))); 127 Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of restarts for learning.", new IntValue(2))); 128 52 129 Problem = new RegressionProblem(); 53 130 } … … 61 138 #region neural network 62 139 protected override void Run() { 63 double decay = 0.01;64 int nLayers = 2;65 int nHidden1 = 10;66 int nHidden2 = 10;67 int nRestarts = 5;68 140 double rmsError, avgRelError; 69 var solution = CreateNeuralNetworkRegressionSolution(Problem.ProblemData, nLayers, nHidden1, nHidden2, decay, nRestarts, out rmsError, out avgRelError);141 var solution = CreateNeuralNetworkRegressionSolution(Problem.ProblemData, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError); 70 142 Results.Add(new Result(NeuralNetworkRegressionModelResultName, "The neural network regression solution.", solution)); 71 143 Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the neural network regression solution on the training set.", new DoubleValue(rmsError))); … … 105 177 106 178 rmsError = alglib.mlprmserror(multiLayerPerceptron, inputMatrix, nRows); 107 avgRelError = alglib.mlpavg error(multiLayerPerceptron, inputMatrix, nRows);179 avgRelError = alglib.mlpavgrelerror(multiLayerPerceptron, inputMatrix, nRows); 108 180 109 181 return new NeuralNetworkRegressionSolution(problemData, new NeuralNetworkModel(multiLayerPerceptron, targetVariable, allowedInputVariables));
Note: See TracChangeset
for help on using the changeset viewer.