Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
05/01/11 22:02:28 (14 years ago)
Author:
cneumuel
Message:

#1215

  • added weight parameters for quality, stddev and evaluated solutions
  • lots of fixes
Location:
branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3
Files:
10 edited

Legend:

Unmodified
Added
Removed
  • branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3/Analyzers/BestParameterConfigurationAnalyzer.cs

    r6018 r6090  
    9898      }
    9999
    100       // population
     100      // population (TODO: extract into PopulationAnalyzer)
    101101      int i = 0;
    102102      RunCollection rc = new RunCollection();
  • branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3/Analyzers/ReferenceQualityAnalyzer.cs

    r6018 r6090  
    4141    }
    4242
     43    public LookupParameter<DoubleValue> QualityWeightParameter {
     44      get { return (LookupParameter<DoubleValue>)Parameters[MetaOptimizationProblem.QualityWeightParameterName]; }
     45    }
     46    public LookupParameter<DoubleValue> StandardDeviationWeightParameter {
     47      get { return (LookupParameter<DoubleValue>)Parameters[MetaOptimizationProblem.StandardDeviationWeightParameterName]; }
     48    }
     49    public LookupParameter<DoubleValue> EvaluatedSolutionsWeightParameter {
     50      get { return (LookupParameter<DoubleValue>)Parameters[MetaOptimizationProblem.EvaluatedSolutionsWeightParameterName]; }
     51    }
     52
    4353    public ReferenceQualityAnalyzer()
    4454      : base() {
     
    4959      Parameters.Add(new LookupParameter<DoubleArray>("ReferenceQualityDeviations", ""));
    5060      Parameters.Add(new LookupParameter<DoubleArray>("ReferenceEvaluatedSolutionAverages", ""));
    51       Parameters.Add(new LookupParameter<ConstrainedItemList<IProblem>>(MetaOptimizationProblem.ProblemsParameterName, ""));
     61      Parameters.Add(new LookupParameter<ConstrainedItemList<IProblem>>(MetaOptimizationProblem.ProblemsParameterName));
    5262      Parameters.Add(new LookupParameter<BoolValue>("Maximization", "Set to false if the problem should be minimized."));
     63      Parameters.Add(new LookupParameter<DoubleValue>(MetaOptimizationProblem.QualityWeightParameterName));
     64      Parameters.Add(new LookupParameter<DoubleValue>(MetaOptimizationProblem.StandardDeviationWeightParameterName));
     65      Parameters.Add(new LookupParameter<DoubleValue>(MetaOptimizationProblem.EvaluatedSolutionsWeightParameterName));
    5366    }
    5467
     
    6578      ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
    6679      bool maximization = MaximizationParameter.ActualValue.Value;
     80      double qualityWeight = QualityWeightParameter.ActualValue.Value;
     81      double standardDeviationWeight = StandardDeviationWeightParameter.ActualValue.Value;
     82      double evaluatedSolutionsWeight = EvaluatedSolutionsWeightParameter.ActualValue.Value;
    6783
    6884      if (ReferenceQualityAveragesParameter.ActualValue == null) {
     
    7692        ReferenceEvaluatedSolutionAveragesParameter.ActualValue = referenceEvaluatedSolutionAverages;
    7793
    78         NormalizePopulation(solutions, qualities, referenceQualityAverages, referenceQualityDeviations, referenceEvaluatedSolutionAverages, 1, 1, 1, maximization);
     94        NormalizePopulation(solutions, qualities, referenceQualityAverages, referenceQualityDeviations, referenceEvaluatedSolutionAverages, qualityWeight, standardDeviationWeight, evaluatedSolutionsWeight, maximization);
    7995
    8096        results.Add(new Result("ReferenceQualities", referenceQualityAverages));
  • branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3/Analyzers/SolutionCacheAnalyzer.cs

    r6018 r6090  
    7171        }
    7272
    73         var runCollection = allRuns.Single(x => x.Key.Value == key).Value;
    74         foreach (var run in solution.Runs) {
    75           if (!((BoolValue)run.Results["Meta.FromCache"]).Value || first) {
    76             run.Results["Meta.FromCache"] = new BoolValue(true);
    77             runCollection.Add(run);
     73        if (solution.Runs != null) { // Runs is null when a base-level algorithm exception happened due to invalid parameters
     74          var runCollection = allRuns.Single(x => x.Key.Value == key).Value;
     75          foreach (var run in solution.Runs) {
     76            if (!((BoolValue)run.Results["Meta.FromCache"]).Value || first) {
     77              run.Results["Meta.FromCache"] = new BoolValue(true);
     78              runCollection.Add(run);
     79            }
    7880          }
    7981        }
  • branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3/Encoding/RangeConstraints/DoubleValueRange.cs

    r5522 r6090  
    11using System;
    22using System.Collections.Generic;
    3 using System.Linq;
    4 using System.Text;
     3using HeuristicLab.Common;
     4using HeuristicLab.Core;
    55using HeuristicLab.Data;
    6 using HeuristicLab.Common;
    76using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    8 using HeuristicLab.Core;
    97
    108namespace HeuristicLab.Problems.MetaOptimization {
     
    1210  public class DoubleValueRange : Range<DoubleValue> {
    1311
     12    public override DoubleValue LowerBound {
     13      get {
     14        return base.LowerBound;
     15      }
     16      set {
     17        base.LowerBound = value;
     18      }
     19    }
     20   
    1421    public DoubleValueRange(DoubleValue lowerBound, DoubleValue upperBound, DoubleValue stepSize) : base(lowerBound, upperBound, stepSize) { }
    1522    public DoubleValueRange() { }
  • branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3/Encoding/RangeConstraints/Range.cs

    r5576 r6090  
    1212    [Storable]
    1313    private T lowerBound;
    14     public T LowerBound {
     14    public virtual T LowerBound {
    1515      get { return lowerBound; }
    1616      set {
     
    3030    [Storable]
    3131    private T upperBound;
    32     public T UpperBound {
     32    public virtual T UpperBound {
    3333      get { return upperBound; }
    3434      set {
     
    4848    [Storable]
    4949    private T stepSize;
    50     public T StepSize {
     50    public virtual T StepSize {
    5151      get { return stepSize; }
    5252      set {
     
    197197      if (random.NextDouble() < 0.1) {
    198198        if (random.NextDouble() < 0.5) {
    199           return LowerBound;
     199          return (T)LowerBound.Clone();
    200200        } else {
    201           return UpperBound;
     201          return (T)UpperBound.Clone();
    202202        }
    203203      }
  • branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3/Encoding/ValueConfigurations/RangeValueConfiguration.cs

    r5653 r6090  
    3636      : base(value, valueDataType) {
    3737      if (actualValue.ValueDataType == typeof(IntValue)) {
    38         RangeConstraint = new IntValueRange(new IntValue(0), (IntValue)value, new IntValue(1));
     38        RangeConstraint = new IntValueRange(new IntValue(0), (IntValue)value.Clone(), new IntValue(1));
    3939      } else if (actualValue.ValueDataType == typeof(DoubleValue)) {
    40         RangeConstraint = new DoubleValueRange(new DoubleValue(0), (DoubleValue)value, new DoubleValue(0.01));
     40        RangeConstraint = new DoubleValueRange(new DoubleValue(0), (DoubleValue)value.Clone(), new DoubleValue(0.01));
    4141      } else if (actualValue.ValueDataType == typeof(PercentValue)) {
    4242        RangeConstraint = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(0.01));
  • branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3/Evaluators/AlgorithmEvaluator.cs

    r6024 r6090  
    1 using System;
    2 using System.Diagnostics;
    3 using System.Linq;
     1using System.Linq;
    42using HeuristicLab.Common;
    53using HeuristicLab.Core;
     
    108using HeuristicLab.Parameters;
    119using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    12 using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
    1310
    1411namespace HeuristicLab.Problems.MetaOptimization {
     
    3330      get { return (ILookupParameter<ParameterConfigurationTree>)Parameters["ParameterConfigurationTree"]; }
    3431    }
    35     public IValueParameter<IItemList<IRun>> RunsParameter {
    36       get { return (IValueParameter<IItemList<IRun>>)Parameters["Runs"]; }
     32    //public IValueParameter<IItemList<IRun>> RunsParameter {
     33    //  get { return (IValueParameter<IItemList<IRun>>)Parameters["Runs"]; }
     34    //}
     35    public LookupParameter<ResultCollection> ResultsParameter {
     36      get { return (LookupParameter<ResultCollection>)Parameters["Results"]; }
    3737    }
    3838    #endregion
     
    4747      Parameters.Add(new LookupParameter<IntValue>("RepetitionIndex", ""));
    4848      Parameters.Add(new LookupParameter<ParameterConfigurationTree>("ParameterConfigurationTree", ""));
    49       Parameters.Add(new ValueParameter<IItemList<IRun>>("Runs", ""));
     49      Parameters.Add(new LookupParameter<ResultCollection>("Results", ""));
    5050    }
    5151    protected AlgorithmEvaluator(AlgorithmEvaluator original, Cloner cloner) : base(original, cloner) { }
     
    5555
    5656    public override IOperation Apply() {
     57      ItemDictionary<StringValue, RunCollection> solutionCache = ResultsParameter.ActualValue.ContainsKey("SolutionCache") ? (ItemDictionary<StringValue, RunCollection>)ResultsParameter.ActualValue["SolutionCache"].Value : null;
     58      ParameterConfigurationTree parameterConfiguration = ParameterConfigurationParameter.ActualValue;
    5759      IAlgorithm algorithm = AlgorithmParameter.ActualValue;
     60      int repetitionIndex = RepetitionIndexParameter.ActualValue.Value;
    5861
    59       #region Debug Code for SymbolicRegressionGrammar
    60       var srp = (SymbolicRegressionSingleObjectiveProblem)algorithm.Problem;
    61       //Console.WriteLine("Evaluating Grammar: " + PrintGrammar(srp.SymbolicExpressionTreeGrammar));
    62       #endregion
    63 
    64       var sw = new Stopwatch();
    65       sw.Start();
    66       //// prepare and clear is needed, if the algorithm has been started and stopped before (this happens when meta level algorithm is paused)
    67       //algorithm.Prepare(); // <--- SHOULD NOT HAPPEN!
    68       //algorithm.Runs.Clear();
    69 
    70       algorithm.StartSync(CancellationToken);
    71       sw.Stop();
    72       Console.WriteLine("{0},{1}: {2} (Grammar: {3})", ProblemIndexParameter.ActualValue.Value, RepetitionIndexParameter.ActualValue.Value, sw.Elapsed, PrintGrammar(srp.SymbolicExpressionTreeGrammar));
    73 
    74       RunsParameter.Value = new ItemList<IRun>(algorithm.Runs);
    75 
     62      if (solutionCache != null && solutionCache.Count(x => x.Key.Value == parameterConfiguration.ParameterInfoString) > 0) {
     63        algorithm.Runs.Add(solutionCache.Single(x => x.Key.Value == parameterConfiguration.ParameterInfoString).Value.ElementAt(repetitionIndex));
     64      } else {
     65        algorithm.StartSync(CancellationToken);
     66      }
    7667      return base.Apply();
    77     }
    78 
    79     /// <summary>
    80     /// This method should repair an invalid parameterConfiguration.
    81     /// The strategy is to just randomize parameter settings. It's not guaranteed to be a vaild setting
    82     /// </summary>
    83     private void Repair(ParameterConfigurationTree parameterConfiguration, IRandom random) {
    84       parameterConfiguration.Randomize(random);
    8568    }
    8669
  • branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3/Evaluators/AlgorithmRunsAnalyzer.cs

    r6038 r6090  
    5454    public LookupParameter<BoolValue> MaximizationParameter {
    5555      get { return (LookupParameter<BoolValue>)Parameters["Maximization"]; }
     56    }
     57    public LookupParameter<DoubleValue> QualityWeightParameter {
     58      get { return (LookupParameter<DoubleValue>)Parameters[MetaOptimizationProblem.QualityWeightParameterName]; }
     59    }
     60    public LookupParameter<DoubleValue> StandardDeviationWeightParameter {
     61      get { return (LookupParameter<DoubleValue>)Parameters[MetaOptimizationProblem.StandardDeviationWeightParameterName]; }
     62    }
     63    public LookupParameter<DoubleValue> EvaluatedSolutionsWeightParameter {
     64      get { return (LookupParameter<DoubleValue>)Parameters[MetaOptimizationProblem.EvaluatedSolutionsWeightParameterName]; }
    5665    }
    5766    #endregion
     
    7584      Parameters.Add(new ScopeTreeLookupParameter<IntValue>("RepetitionIndex", "The index of the repetition"));
    7685      Parameters.Add(new LookupParameter<BoolValue>("Maximization", "Set to false if the problem should be minimized."));
     86      Parameters.Add(new LookupParameter<DoubleValue>(MetaOptimizationProblem.QualityWeightParameterName));
     87      Parameters.Add(new LookupParameter<DoubleValue>(MetaOptimizationProblem.StandardDeviationWeightParameterName));
     88      Parameters.Add(new LookupParameter<DoubleValue>(MetaOptimizationProblem.EvaluatedSolutionsWeightParameterName));
    7789    }
    7890    protected AlgorithmRunsAnalyzer(AlgorithmRunsAnalyzer original, Cloner cloner)
     
    92104      bool maximization = MaximizationParameter.ActualValue.Value;
    93105      int repetitions = RepetitionsParameter.ActualValue.Value;
     106      double qualityWeight = QualityWeightParameter.ActualValue.Value;
     107      double standardDeviationWeight = StandardDeviationWeightParameter.ActualValue.Value;
     108      double evaluatedSolutionsWeight = EvaluatedSolutionsWeightParameter.ActualValue.Value;
    94109      var resultNames = new List<string> { "BestQuality", "Execution Time", "EvaluatedSolutions" };
    95110      int currentGeneration = GenerationsParameter.ActualValue != null ? GenerationsParameter.ActualValue.Value : 0;
     
    149164        parameterConfiguration.Runs = runs;
    150165
    151         this.QualityParameter.ActualValue = new DoubleValue(MetaOptimizationUtil.Normalize(parameterConfiguration, referenceQualityAverages, referenceQualityDeviations, referenceEvaluatedSolutionAverages, 1, 0.1, 1, maximization));
     166        this.QualityParameter.ActualValue = new DoubleValue(MetaOptimizationUtil.Normalize(parameterConfiguration, referenceQualityAverages, referenceQualityDeviations, referenceEvaluatedSolutionAverages, qualityWeight, standardDeviationWeight, evaluatedSolutionsWeight, maximization));
    152167      } else {
    153168        // something terrible happened -> most probably due to invalid parameters.
     
    155170        double penaltyValue;
    156171        if (maximization)
    157           penaltyValue = results.ContainsKey("CurrentWorstQuality") ? ((DoubleValue)results["CurrentWorstQuality"]).Value : referenceQualityAverages.Min();
     172          penaltyValue = results.ContainsKey("CurrentWorstQuality") ? ((DoubleValue)results["CurrentWorstQuality"].Value).Value : referenceQualityAverages.Min();
    158173        else
    159           penaltyValue = results.ContainsKey("CurrentWorstQuality") ? ((DoubleValue)results["CurrentWorstQuality"]).Value : referenceQualityAverages.Max();
     174          penaltyValue = results.ContainsKey("CurrentWorstQuality") ? ((DoubleValue)results["CurrentWorstQuality"].Value).Value : referenceQualityAverages.Max();
     175       
    160176        this.QualityParameter.ActualValue = new DoubleValue(penaltyValue);
     177        parameterConfiguration.Quality = new DoubleValue(penaltyValue);
     178
     179        parameterConfiguration.AverageExecutionTimes = new ItemList<TimeSpanValue>(Enumerable.Repeat(new TimeSpanValue(TimeSpan.Zero), problems.Count));
     180        parameterConfiguration.AverageEvaluatedSolutions = new DoubleArray(Enumerable.Repeat(0.0, problems.Count).ToArray());
     181        parameterConfiguration.Repetitions = new IntValue(repetitions);
     182        parameterConfiguration.AverageQualities = new DoubleArray(Enumerable.Repeat(0.0, problems.Count).ToArray());
     183        parameterConfiguration.BestQualities = new DoubleArray(Enumerable.Repeat(0.0, problems.Count).ToArray());
     184        parameterConfiguration.WorstQualities = new DoubleArray(Enumerable.Repeat(0.0, problems.Count).ToArray());
     185        parameterConfiguration.QualityVariances = new DoubleArray(Enumerable.Repeat(0.0, problems.Count).ToArray());
     186        parameterConfiguration.QualityStandardDeviations = new DoubleArray(Enumerable.Repeat(0.0, problems.Count).ToArray());
     187        parameterConfiguration.Runs = null;
    161188      }
    162189
  • branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3/MetaOptimizationProblem.cs

    r6017 r6090  
    5151    public const string IntValueCrossoverParameterName = "IntValueCrossover";
    5252    public const string DoubleValueCrossoverParameterName = "DoubleValueCrossover";
     53    public const string QualityWeightParameterName = "QualityWeight";
     54    public const string StandardDeviationWeightParameterName = "StandardDeviationWeight";
     55    public const string EvaluatedSolutionsWeightParameterName = "EvaluatedSolutionsWeight";
     56
    5357
    5458    #region Parameter Properties
     
    134138      var validIntCrossovers = new ItemSet<IIntValueCrossover>(ApplicationManager.Manager.GetInstances<IIntValueCrossover>());
    135139      var validDoubleCrossovers = new ItemSet<IDoubleValueCrossover>(ApplicationManager.Manager.GetInstances<IDoubleValueCrossover>());
    136       Parameters.Add(new ConstrainedValueParameter<IIntValueManipulator>(IntValueManipulatorParameterName, "", validIntManipulators, validIntManipulators.Where(x => x.GetType() == typeof(NormalIntValueManipulator)).SingleOrDefault()));
    137       Parameters.Add(new ConstrainedValueParameter<IDoubleValueManipulator>(DoubleValueManipulatorParameterName, "", validDoubleManipulators, validDoubleManipulators.Where(x => x.GetType() == typeof(NormalDoubleValueManipulator)).SingleOrDefault()));
    138       Parameters.Add(new ConstrainedValueParameter<IIntValueCrossover>(IntValueCrossoverParameterName, "", validIntCrossovers, validIntCrossovers.Where(x => x.GetType() == typeof(NormalIntValueCrossover)).SingleOrDefault()));
    139       Parameters.Add(new ConstrainedValueParameter<IDoubleValueCrossover>(DoubleValueCrossoverParameterName, "", validDoubleCrossovers, validDoubleCrossovers.Where(x => x.GetType() == typeof(NormalDoubleValueCrossover)).SingleOrDefault()));
     140      Parameters.Add(new ConstrainedValueParameter<IIntValueManipulator>(IntValueManipulatorParameterName, validIntManipulators, validIntManipulators.Where(x => x.GetType() == typeof(NormalIntValueManipulator)).SingleOrDefault()));
     141      Parameters.Add(new ConstrainedValueParameter<IDoubleValueManipulator>(DoubleValueManipulatorParameterName, validDoubleManipulators, validDoubleManipulators.Where(x => x.GetType() == typeof(NormalDoubleValueManipulator)).SingleOrDefault()));
     142      Parameters.Add(new ConstrainedValueParameter<IIntValueCrossover>(IntValueCrossoverParameterName, validIntCrossovers, validIntCrossovers.Where(x => x.GetType() == typeof(NormalIntValueCrossover)).SingleOrDefault()));
     143      Parameters.Add(new ConstrainedValueParameter<IDoubleValueCrossover>(DoubleValueCrossoverParameterName, validDoubleCrossovers, validDoubleCrossovers.Where(x => x.GetType() == typeof(NormalDoubleValueCrossover)).SingleOrDefault()));
     144
     145      Parameters.Add(new ValueParameter<DoubleValue>(QualityWeightParameterName, new DoubleValue(1)));
     146      Parameters.Add(new ValueParameter<DoubleValue>(StandardDeviationWeightParameterName, new DoubleValue(0.01)));
     147      Parameters.Add(new ValueParameter<DoubleValue>(EvaluatedSolutionsWeightParameterName, new DoubleValue(0.0005)));
    140148
    141149      Maximization = new BoolValue(false);
     
    182190    private void InitializeOperators() {
    183191      Operators.AddRange(ApplicationManager.Manager.GetInstances<IParameterConfigurationOperator>().Cast<IOperator>());
     192      Operators.Add(new ReferenceQualityAnalyzer());
    184193      Operators.Add(new BestParameterConfigurationAnalyzer());
    185       Operators.Add(new ReferenceQualityAnalyzer());
    186194      Operators.Add(new SolutionCacheAnalyzer());
    187195      Operators.Add(new PMOPopulationDiversityAnalyzer());
  • branches/HeuristicLab.MetaOptimization/HeuristicLab.Problems.MetaOptimization/3.3/MetaOptimizationUtil.cs

    r6018 r6090  
    5757      parameterConfigurationTree.NormalizedEvaluatedSolutions = new DoubleArray(evaluatedSolutionAveragesNormalized);
    5858
    59       double qualityAveragesNormalizedValue = qualityAveragesNormalized.Average() * qualityAveragesWeight;
    60       double qualityDeviationsNormalizedValue = qualityDeviationsNormalized.Average() * qualityDeviationsWeight;
    61       double evaluatedSolutionAveragesNormalizedValue = evaluatedSolutionAveragesNormalized.Average() * evaluatedSolutionsWeight;
     59      double qualityAveragesNormalizedValue = qualityAveragesNormalized.Average();
     60      double qualityDeviationsNormalizedValue = qualityDeviationsNormalized.Average();
     61      double evaluatedSolutionAveragesNormalizedValue = evaluatedSolutionAveragesNormalized.Average();
    6262
     63      // deviation and evaluatedSolutions are always minimization problems. so if maximization=true, flip the values around 1.0 (e.g. 1.15 -> 0.85)
    6364      if (maximization) {
    64         // deviation and evaluatedSolutions are always minimization problems. so if maximization=true, flip the values around 1.0 (e.g. 1.15 -> 0.85)
    6565        qualityDeviationsNormalizedValue -= (qualityDeviationsNormalizedValue - 1) * 2;
    6666        evaluatedSolutionAveragesNormalizedValue -= (evaluatedSolutionAveragesNormalizedValue - 1) * 2;
    6767      }
    6868
     69      // apply weights
    6970      qualityAveragesNormalizedValue *= qualityAveragesWeight;
    7071      qualityDeviationsNormalizedValue *= qualityDeviationsWeight;
    7172      evaluatedSolutionAveragesNormalizedValue *= evaluatedSolutionsWeight;
    7273
    73       parameterConfigurationTree.Quality = new DoubleValue(new double[] {qualityAveragesNormalizedValue, qualityDeviationsNormalizedValue, evaluatedSolutionAveragesNormalizedValue}.Average());
    74      
     74      double weightSum = qualityAveragesWeight + qualityDeviationsWeight + evaluatedSolutionsWeight;
     75      parameterConfigurationTree.Quality = new DoubleValue((qualityAveragesNormalizedValue + qualityDeviationsNormalizedValue + evaluatedSolutionAveragesNormalizedValue) / weightSum);
     76
    7577      return parameterConfigurationTree.Quality.Value;
    7678    }
Note: See TracChangeset for help on using the changeset viewer.