- Timestamp:
- 03/31/11 18:23:02 (14 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4
- Files:
-
- 6 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer.cs
r5818 r5914 76 76 77 77 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) { 78 var model = new SymbolicRegressionModel( bestTree, SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);78 var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 79 79 if (ApplyLinearScaling.Value) 80 80 SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue); 81 return new SymbolicRegressionSolution(model, ProblemDataParameter.ActualValue);81 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); 82 82 } 83 83 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer.cs
r5818 r5914 65 65 66 66 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) { 67 var model = new SymbolicRegressionModel( bestTree, SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);67 var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 68 68 if (ApplyLinearScaling.Value) 69 69 SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue); 70 return new SymbolicRegressionSolution(model, ProblemDataParameter.ActualValue);70 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); 71 71 } 72 72 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveTrainingBestSolutionAnalyzer.cs
r5818 r5914 75 75 76 76 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 77 var model = new SymbolicRegressionModel( bestTree, SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);77 var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 78 78 if (ApplyLinearScaling.Value) 79 79 SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue); 80 return new SymbolicRegressionSolution(model, ProblemDataParameter.ActualValue);80 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); 81 81 } 82 82 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveValidationBestSolutionAnalyzer.cs
r5818 r5914 67 67 68 68 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 69 var model = new SymbolicRegressionModel( bestTree, SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);69 var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 70 70 if (ApplyLinearScaling.Value) 71 71 SymbolicRegressionModel.Scale(model, ProblemDataParameter.ActualValue); 72 return new SymbolicRegressionSolution(model, ProblemDataParameter.ActualValue);72 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); 73 73 } 74 74 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SymbolicRegressionModel.cs
r5894 r5914 21 21 22 22 using System.Collections.Generic; 23 using System.Linq;24 23 using HeuristicLab.Common; 25 24 using HeuristicLab.Core; 26 using HeuristicLab.Data;27 25 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 28 using HeuristicLab.Operators;29 using HeuristicLab.Parameters;30 26 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 31 using HeuristicLab.Optimization;32 using System;33 27 34 28 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SymbolicRegressionSolution.cs
r5818 r5914 20 20 #endregion 21 21 22 using System.Collections.Generic; 23 using System.Linq; 22 using System; 24 23 using HeuristicLab.Common; 25 24 using HeuristicLab.Core; 26 25 using HeuristicLab.Data; 27 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 28 using HeuristicLab.Operators; 29 using HeuristicLab.Parameters; 26 using HeuristicLab.Optimization; 30 27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 31 using HeuristicLab.Optimization;32 using System;33 28 34 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
Note: See TracChangeset
for help on using the changeset viewer.