Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
03/02/11 00:52:18 (14 years ago)
Author:
mkommend
Message:

#1418: Adapated DataAnalysisProblemData as well as RegressionProblemData to use parameters.

Location:
branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveMeanSquaredErrorTreeSizeEvaluator.cs

    r5549 r5586  
    5353    public static double[] Calculate(ISymbolicDataAnalysisTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows) {
    5454      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
    55       IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
     55      IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable.Value, rows);
    5656      IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
    5757      double mse = OnlineMeanSquaredErrorEvaluator.Calculate(originalValues, boundedEstimationValues);
  • branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator.cs

    r5551 r5586  
    5353    public static double[] Calculate(ISymbolicDataAnalysisTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows) {
    5454      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
    55       IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
     55      IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable.Value, rows);
    5656      double r2 = OnlinePearsonsRSquaredEvaluator.Calculate(originalValues, estimatedValues);
    5757      return new double[2] { r2, solution.Length };
  • branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.cs

    r5548 r5586  
    5353    public static double Calculate(ISymbolicDataAnalysisTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows) {
    5454      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
    55       IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
     55      IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable.Value, rows);
    5656      IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
    5757      return OnlineMeanSquaredErrorEvaluator.Calculate(originalValues, boundedEstimationValues);
  • branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.cs

    r5551 r5586  
    5353    public static double Calculate(ISymbolicDataAnalysisTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows) {
    5454      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
    55       IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
     55      IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable.Value, rows);
    5656      return OnlinePearsonsRSquaredEvaluator.Calculate(originalValues, estimatedValues);
    5757    }
Note: See TracChangeset for help on using the changeset viewer.