Changeset 5501 for branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective
- Timestamp:
- 02/17/11 01:19:27 (14 years ago)
- Location:
- branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective
- Files:
-
- 1 added
- 3 copied
Legend:
- Unmodified
- Added
- Removed
-
branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveEvaluator.cs
r5500 r5501 20 20 #endregion 21 21 22 23 22 using HeuristicLab.Common; 24 23 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 25 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 26 public abstract class SymbolicRegressionSingleObjectiveEvaluator : SymbolicDataAnalysisSingleObjectiveEvaluator, ISymbolicRegressionEvaluator { 27 public new IRegressionProblemData ProblemData { 28 get { return (IRegressionProblemData)base.ProblemData; } 24 25 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification { 26 public abstract class SymbolicClassificationSingleObjectiveEvaluator : SymbolicDataAnalysisSingleObjectiveEvaluator, ISymbolicClassificationSingleObjectiveEvaluator { 27 public new IClassificationProblemData ProblemData { 28 get { return (IClassificationProblemData)base.ProblemData; } 29 29 } 30 30 31 31 [StorableConstructor] 32 protected Symbolic RegressionSingleObjectiveEvaluator(bool deserializing) : base(deserializing) { }33 protected Symbolic RegressionSingleObjectiveEvaluator(SymbolicRegressionSingleObjectiveEvaluator original, Cloner cloner)32 protected SymbolicClassificationSingleObjectiveEvaluator(bool deserializing) : base(deserializing) { } 33 protected SymbolicClassificationSingleObjectiveEvaluator(SymbolicClassificationSingleObjectiveEvaluator original, Cloner cloner) 34 34 : base(original, cloner) { 35 35 } 36 36 37 protected Symbolic RegressionSingleObjectiveEvaluator()37 protected SymbolicClassificationSingleObjectiveEvaluator() 38 38 : base() { 39 39 -
branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator.cs
r5500 r5501 27 27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 28 28 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic. Regression {30 [Item("Mean squared error evaluator", "Calculates the mean squared error of a symbolic regression solution.")]29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification { 30 [Item("Mean squared error evaluator", "Calculates the mean squared error of a symbolic classification solution.")] 31 31 [StorableClass] 32 public class Symbolic RegressionSingleObjectiveMeanSquaredErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator {32 public class SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator : SymbolicClassificationSingleObjectiveEvaluator { 33 33 [StorableConstructor] 34 protected Symbolic RegressionSingleObjectiveMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }35 protected Symbolic RegressionSingleObjectiveMeanSquaredErrorEvaluator(SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator original, Cloner cloner)34 protected SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { } 35 protected SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator original, Cloner cloner) 36 36 : base(original, cloner) { 37 37 } 38 38 public override IDeepCloneable Clone(Cloner cloner) { 39 return new Symbolic RegressionSingleObjectiveMeanSquaredErrorEvaluator(this, cloner);39 return new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(this, cloner); 40 40 } 41 41 … … 47 47 } 48 48 49 public static double Calculate(ISymbolicDataAnalysisTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, I RegressionProblemData problemData, IEnumerable<int> rows) {49 public static double Calculate(ISymbolicDataAnalysisTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows) { 50 50 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 51 51 IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows); -
branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator.cs
r5500 r5501 27 27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 28 28 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic. Regression.SingleObjective.Evaluators{30 [Item("Pearson R² evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic regression solution.")]29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification { 30 [Item("Pearson R² evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic classification solution.")] 31 31 [StorableClass] 32 public class Symbolic RegressionSingleObjectivePearsonRSquaredEvaluator : SymbolicRegressionSingleObjectiveEvaluator {32 public class SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator : SymbolicClassificationSingleObjectiveEvaluator { 33 33 [StorableConstructor] 34 protected Symbolic RegressionSingleObjectivePearsonRSquaredEvaluator(bool deserializing) : base(deserializing) { }35 protected Symbolic RegressionSingleObjectivePearsonRSquaredEvaluator(SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner)34 protected SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator(bool deserializing) : base(deserializing) { } 35 protected SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator(SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner) 36 36 : base(original, cloner) { 37 37 } 38 38 public override IDeepCloneable Clone(Cloner cloner) { 39 return new Symbolic RegressionSingleObjectivePearsonRSquaredEvaluator(this, cloner);39 return new SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator(this, cloner); 40 40 } 41 41 … … 47 47 } 48 48 49 public static double Calculate(ISymbolicDataAnalysisTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, I RegressionProblemData problemData, IEnumerable<int> rows) {49 public static double Calculate(ISymbolicDataAnalysisTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows) { 50 50 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 51 51 IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
Note: See TracChangeset
for help on using the changeset viewer.