Changeset 5024 for branches/DataAnalysis.PopulationDiversityAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic
- Timestamp:
- 12/05/10 22:10:49 (14 years ago)
- Location:
- branches/DataAnalysis.PopulationDiversityAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers
- Files:
-
- 1 added
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/DataAnalysis.PopulationDiversityAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/FineGrainedStructuralPopulationDiversityAnalyzer.cs
r4949 r5024 43 43 [StorableClass] 44 44 public sealed class FineGrainedStructuralPopulationDiversityAnalyzer : SymbolicRegressionPopulationDiversityAnalyzer { 45 46 // properties: min level delts, max level delta, etc.47 45 48 46 #region Properties and Parameters … … 192 190 IDictionary<string, IList<GeneticInformationItem>>[] geneticInformationItemsListsDictionaries = new IDictionary<string, IList<GeneticInformationItem>>[n]; 193 191 for (int i = 0; i < n; i++) { 194 geneticInformationItemsLists[i] = GeneticInformationItem. getGeneticInformationItems(solutions[i].Root, variableNames, MinimumLevelDelta, MaximumLevelDelta);192 geneticInformationItemsLists[i] = GeneticInformationItem.GetGeneticInformationItems(solutions[i].Root, variableNames, MinimumLevelDelta, MaximumLevelDelta); 195 193 geneticInformationItemsListsDictionaries[i] = GeneticInformationItem.GetDictionary(geneticInformationItemsLists[i]); 196 194 } … … 233 231 } 234 232 235 #region private class GeneticInformationItem236 237 private class GeneticInformationItem {238 239 private Type myAncestorDefinition;240 public Type AncestorDefinition {241 get { return myAncestorDefinition; }242 }243 244 private int myAncestorIndex;245 public int AncestorIndex {246 get { return myAncestorIndex; }247 }248 249 private Type myDescendantDefinition;250 public Type DescendantDefinition {251 get { return myDescendantDefinition; }252 }253 254 private int myAncestorLevel;255 public int AncestorLevel {256 get { return myAncestorLevel; }257 }258 259 private double myDescendantCoefficient;260 public double DescendantCoefficient {261 get { return myDescendantCoefficient; }262 }263 264 private double myDescendantVariableIndex;265 public double DescendantVariableIndex {266 get { return myDescendantVariableIndex; }267 }268 269 private int myDescendantTimeOffset;270 public int DescendantTimeOffset {271 get { return myDescendantTimeOffset; }272 }273 274 private SymbolicExpressionTreeNode myDescendantTreeNode;275 public SymbolicExpressionTreeNode DescendantTreeNode {276 get { return myDescendantTreeNode; }277 }278 279 private int myDescendantLevel;280 public int DescendantLevel {281 get { return myDescendantLevel; }282 }283 284 public int LevelDelta {285 get { return (myDescendantLevel - myAncestorLevel); }286 }287 288 public static IList<GeneticInformationItem> CopyList(IList<GeneticInformationItem> GeneticInformationItemsList) {289 List<GeneticInformationItem> list = new List<GeneticInformationItem>(GeneticInformationItemsList.Count);290 list.AddRange(GeneticInformationItemsList);291 return list;292 }293 294 public static string GetKey(GeneticInformationItem item) {295 return item.AncestorDefinition.Name.ToString() + "," + item.DescendantDefinition.Name.ToString();296 }297 298 public static IDictionary<string, IList<GeneticInformationItem>> GetDictionary(IList<GeneticInformationItem> GeneticInformationItemsList) {299 IDictionary<string, IList<GeneticInformationItem>> dictionary = new Dictionary<string, IList<GeneticInformationItem>>();300 foreach (GeneticInformationItem item in GeneticInformationItemsList) {301 string key = GetKey(item);302 if (!dictionary.ContainsKey(key))303 dictionary.Add(key, new List<GeneticInformationItem>());304 dictionary[key].Add(item);305 }306 return dictionary;307 }308 309 public static IDictionary<string, IList<GeneticInformationItem>> CopyDictionary(IDictionary<string, IList<GeneticInformationItem>> Dictionary) {310 IDictionary<string, IList<GeneticInformationItem>> copy = new Dictionary<string, IList<GeneticInformationItem>>();311 foreach (KeyValuePair<string, IList<GeneticInformationItem>> pair in Dictionary) {312 copy.Add(pair.Key, CopyList(pair.Value));313 }314 return copy;315 }316 317 public static GeneticInformationItem FindBestPendant(GeneticInformationItem Item, IList<GeneticInformationItem> ComparisonItems,318 double ConstantMinimum, double ConstantMaximum, double VariableWeightSigma,319 int MaximumTreeHeight, int MinimumTimeOffset, int MaximumTimeOffset,320 double LevelDifferenceCoefficient, double AncestorIndexCoefficient,321 double ConstantValueCoefficient, double VariableWeightCoefficient, double TimeOffsetCoefficient, double VariableIndexCoefficient,322 bool AdditiveSimilarityCalculation,323 out double BestPendantSimilarity) {324 int maxSimilarityIndex = -1;325 double similarity, maxSimilarity = -double.MaxValue;326 for (int i = 0; i < ComparisonItems.Count; i++) {327 similarity = Similarity(Item, ComparisonItems[i], ConstantMinimum, ConstantMaximum, VariableWeightSigma, MaximumTreeHeight, MinimumTimeOffset, MaximumTimeOffset,328 LevelDifferenceCoefficient, AncestorIndexCoefficient, ConstantValueCoefficient, VariableWeightSigma, TimeOffsetCoefficient,329 VariableWeightCoefficient, AdditiveSimilarityCalculation);330 if (!double.IsNaN(similarity) && similarity > maxSimilarity) {331 maxSimilarity = similarity;332 maxSimilarityIndex = i;333 }334 }335 BestPendantSimilarity = maxSimilarity;336 if (maxSimilarityIndex >= 0)337 return ComparisonItems[maxSimilarityIndex];338 else339 return null;340 }341 342 public static double Similarity(GeneticInformationItem Item1, GeneticInformationItem Item2,343 double ConstantMinimum, double ConstantMaximum, double VariableWeightSigma,344 int MaximumTreeHeight, int MinimumTimeOffset, int MaximumTimeOffset,345 double LevelDifferenceCoefficient, double AncestorIndexCoefficient,346 double ConstantValueCoefficient, double VariableWeightCoefficient, double TimeOffsetCoefficient, double VariableIndexCoefficient,347 bool AdditiveSimilarityCalculation) {348 349 if (Item1.AncestorDefinition != Item2.AncestorDefinition || Item1.DescendantDefinition != Item2.DescendantDefinition)350 return double.NaN;351 352 // the two items for sure have the same behavior definitions353 354 #region initialize punishments355 356 double punishmentContributionSum = 0;357 double punishmentCoefficientsProduct = 1;358 359 double ancestorIndexDifferencePunishment = 0;360 double levelDifferencePunishment = 0;361 362 double descendantConstantValueDifferencePunishment = 0;363 double descendantVariableWeightDifferencePunishment = 0;364 double descendantTimeOffsetDifferencePunishment = 0;365 double descendantVariableIndexDifferencePunishment = 0;366 367 #endregion368 369 if (LevelDifferenceCoefficient > 0) {370 levelDifferencePunishment = Item1.LevelDelta - Item2.LevelDelta;371 if (levelDifferencePunishment < 0)372 levelDifferencePunishment = -levelDifferencePunishment;373 levelDifferencePunishment /= MaximumTreeHeight;374 if (levelDifferencePunishment > 1)375 levelDifferencePunishment = 1;376 levelDifferencePunishment *= LevelDifferenceCoefficient;377 punishmentContributionSum += LevelDifferenceCoefficient;378 punishmentCoefficientsProduct *= (1 - LevelDifferenceCoefficient);379 }380 if (AncestorIndexCoefficient > 0) {381 if (Item1.AncestorIndex != Item2.AncestorIndex)382 ancestorIndexDifferencePunishment = 1;383 else384 ancestorIndexDifferencePunishment = 0;385 ancestorIndexDifferencePunishment *= AncestorIndexCoefficient;386 punishmentContributionSum += AncestorIndexCoefficient;387 punishmentCoefficientsProduct *= (1 - AncestorIndexCoefficient);388 }389 390 if (Item1.DescendantTreeNode is ConstantTreeNode) {391 if (ConstantValueCoefficient > 0) {392 double constantValueCoefficientDifference = Math.Abs(Item1.DescendantCoefficient - Item2.DescendantCoefficient);393 // assume uniform distribution within given minimum and maximum394 descendantConstantValueDifferencePunishment = (constantValueCoefficientDifference / (ConstantMaximum - ConstantMinimum));395 if (descendantConstantValueDifferencePunishment > 1)396 descendantConstantValueDifferencePunishment = 1;397 descendantConstantValueDifferencePunishment *= ConstantValueCoefficient;398 punishmentContributionSum += ConstantValueCoefficient;399 punishmentCoefficientsProduct *= (1 - ConstantValueCoefficient);400 }401 }402 if(Item1.DescendantTreeNode is VariableTreeNode) {403 if (VariableWeightCoefficient > 0) {404 double variableWeightDifference = Math.Abs(Item1.DescendantCoefficient - Item2.DescendantCoefficient);405 // assume normal distribution within given sigma406 descendantVariableWeightDifferencePunishment = variableWeightDifference / (VariableWeightSigma * 4);407 if (descendantVariableWeightDifferencePunishment > 1)408 descendantVariableWeightDifferencePunishment = 1;409 descendantVariableWeightDifferencePunishment *= VariableWeightCoefficient;410 punishmentContributionSum += VariableWeightCoefficient;411 punishmentCoefficientsProduct *= (1 - VariableWeightCoefficient);412 }413 if (TimeOffsetCoefficient > 0) {414 double timeOffsetDifference = Math.Abs(Item1.DescendantTimeOffset - Item2.DescendantTimeOffset);415 if (MaximumTimeOffset > 0)416 descendantTimeOffsetDifferencePunishment = timeOffsetDifference / (MaximumTimeOffset - MinimumTimeOffset);417 descendantTimeOffsetDifferencePunishment *= TimeOffsetCoefficient;418 punishmentContributionSum += TimeOffsetCoefficient;419 punishmentCoefficientsProduct *= (1 - TimeOffsetCoefficient);420 }421 if (VariableIndexCoefficient > 0) {422 if (Item1.DescendantVariableIndex != Item2.DescendantVariableIndex)423 descendantVariableIndexDifferencePunishment = 1;424 else425 descendantVariableIndexDifferencePunishment = 0;426 descendantVariableIndexDifferencePunishment *= VariableIndexCoefficient;427 punishmentContributionSum += VariableIndexCoefficient;428 punishmentCoefficientsProduct *= (1 - VariableIndexCoefficient);429 }430 }431 432 double result;433 434 if (AdditiveSimilarityCalculation) {435 double punishmentsSum = ancestorIndexDifferencePunishment + levelDifferencePunishment +436 descendantConstantValueDifferencePunishment + descendantVariableWeightDifferencePunishment +437 descendantTimeOffsetDifferencePunishment + descendantVariableIndexDifferencePunishment;438 result = (1 - punishmentsSum / punishmentContributionSum);439 } else {440 result =441 (1 - ancestorIndexDifferencePunishment) *442 (1 - levelDifferencePunishment) *443 (1 - descendantConstantValueDifferencePunishment) *444 (1 - descendantVariableWeightDifferencePunishment) *445 (1 - descendantTimeOffsetDifferencePunishment) *446 (1 - descendantVariableIndexDifferencePunishment);447 // worst possible result is (1-punishmentCoefficientsProduct), so scale linearly to [0;1]:448 result = (result - punishmentCoefficientsProduct) / (1 - punishmentCoefficientsProduct);449 }450 451 if (result < 0 || result > 1)452 throw new InvalidOperationException("ERROR in GeneticInformationItem.Similarity: An invalid similarity value (" + result.ToString() + ") has been calculated.");453 454 return result;455 456 }457 458 public static IList<GeneticInformationItem> getGeneticInformationItems(SymbolicExpressionTreeNode node, List<string> variableNames,459 int MinimumLevelDelta, int MaximumLevelDelta) {460 // first we have to collect all items, then we filter; it is not possible to filter while collecting because the items are461 // collected recursively and used for collecting the parents' items.462 if (MinimumLevelDelta > MaximumLevelDelta)463 return new List<GeneticInformationItem>();464 IList<GeneticInformationItem> list = getGeneticInformationItems(node, variableNames, 0);465 List<GeneticInformationItem> resultList = new List<GeneticInformationItem>();466 foreach (GeneticInformationItem item in list)467 if (item.LevelDelta >= MinimumLevelDelta && item.LevelDelta <= MaximumLevelDelta)468 resultList.Add(item);469 return resultList;470 }471 472 private static IList<GeneticInformationItem> getGeneticInformationItems(SymbolicExpressionTreeNode node, List<string> variableNames, int level) {473 // Idea: collect all descendants' lists and then add new items using the retrieved ones.474 // This should save lots of time and reduce complexity of the items retrieval process.475 // Program roots are not considered, neither are start symbol nodes476 if (node.Symbol is ProgramRootSymbol)477 return getGeneticInformationItems(node.SubTrees[0], variableNames, level + 1);478 List<GeneticInformationItem> list = new List<GeneticInformationItem>();479 // add item for this node:480 if (!(node.Symbol is StartSymbol)) {481 list.Add(new GeneticInformationItem(node, variableNames, level));482 }483 // add items for the descendants, but prevent multiple references to descendant nodes:484 List<SymbolicExpressionTreeNode> descendantNodes = new List<SymbolicExpressionTreeNode>();485 for (int i = 0; i < node.SubTrees.Count; i++) {486 IList<GeneticInformationItem> descendantItems = getGeneticInformationItems(node.SubTrees[i], variableNames, level + 1);487 list.AddRange(descendantItems);488 if (!(node.Symbol is StartSymbol))489 foreach (GeneticInformationItem item in descendantItems) {490 if (!descendantNodes.Contains(item.DescendantTreeNode)) {491 list.Add(new GeneticInformationItem(node, item, i, level));492 descendantNodes.Add(item.DescendantTreeNode);493 }494 }495 }496 return list;497 }498 499 private GeneticInformationItem (SymbolicExpressionTreeNode node, List<string> variableNames, int level) {500 myAncestorIndex = -1;501 VariableTreeNode variableTreeNode = node as VariableTreeNode;502 LaggedVariableTreeNode laggedVariableTreeNode = node as LaggedVariableTreeNode;503 ConstantTreeNode constantTreeNode = node as ConstantTreeNode;504 myAncestorDefinition = node.Symbol.GetType();505 myDescendantDefinition = myAncestorDefinition;506 if (variableTreeNode != null)507 myDescendantCoefficient = variableTreeNode.Weight;508 else if (constantTreeNode != null)509 myDescendantCoefficient = constantTreeNode.Value;510 else511 myDescendantCoefficient = double.NaN;512 if (laggedVariableTreeNode != null)513 myDescendantTimeOffset = laggedVariableTreeNode.Lag;514 else515 myDescendantTimeOffset = 0;516 if (variableTreeNode != null)517 myDescendantVariableIndex = variableNames.IndexOf(variableTreeNode.VariableName);518 else519 myDescendantVariableIndex = -1;520 myAncestorLevel = level;521 myDescendantLevel = level;522 myDescendantTreeNode = node;523 }524 525 private GeneticInformationItem(SymbolicExpressionTreeNode parentNode, GeneticInformationItem descendantGeneticInformationItem,526 int ancestorIndex, int parentNodeLevel) {527 myAncestorIndex = ancestorIndex;528 myAncestorLevel = parentNodeLevel;529 myAncestorDefinition = parentNode.Symbol.GetType();530 myDescendantCoefficient = descendantGeneticInformationItem.DescendantCoefficient;531 myDescendantDefinition = descendantGeneticInformationItem.DescendantDefinition;532 myDescendantTimeOffset = descendantGeneticInformationItem.DescendantTimeOffset;533 myDescendantVariableIndex = descendantGeneticInformationItem.DescendantVariableIndex;534 myDescendantLevel = descendantGeneticInformationItem.DescendantLevel;535 myDescendantTreeNode = descendantGeneticInformationItem.DescendantTreeNode;536 }537 538 public override string ToString() {539 return "ancestor: " + AncestorDefinition.Name.ToString() + ", [" + AncestorIndex + "]; "540 + "descendant: " + DescendantDefinition.Name.ToString() + " (varIndex " + DescendantVariableIndex + ", "541 + DescendantCoefficient + ", t-" + DescendantTimeOffset + ");"542 + " level delta = " + DescendantLevel + "-" + AncestorLevel + " = " + LevelDelta;543 }544 545 }546 547 #endregion548 549 233 } 234 550 235 }
Note: See TracChangeset
for help on using the changeset viewer.