Changeset 4469 for branches/HeuristicLab.Classification
- Timestamp:
- 09/22/10 12:14:38 (14 years ago)
- Location:
- branches/HeuristicLab.Classification
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.Classification/HeuristicLab.Problems.DataAnalysis.Classification.Views/3.3/ConfusionMatrixView.cs
r4417 r4469 105 105 106 106 double[,] confusionMatrix = new double[Content.ProblemData.NumberOfClasses, Content.ProblemData.NumberOfClasses]; 107 int start; 108 int end; 107 IEnumerable<int> rows; 109 108 110 109 if (cmbSamples.SelectedItem.ToString() == TrainingSamples) { 111 start = Content.ProblemData.TrainingSamplesStart.Value; 112 end = Content.ProblemData.TrainingSamplesEnd.Value; 110 rows = Content.ProblemData.TrainingIndizes; 113 111 } else if (cmbSamples.SelectedItem.ToString() == TestSamples) { 114 start = Content.ProblemData.TestSamplesStart.Value; 115 end = Content.ProblemData.TestSamplesEnd.Value; 112 rows = Content.ProblemData.TestIndizes; 116 113 } else throw new InvalidOperationException(); 117 114 … … 123 120 } 124 121 125 double[] targetValues = Content.ProblemData.Dataset.Get VariableValues(Content.ProblemData.TargetVariable.Value, start, end);126 double[] predictedValues = Content. EstimatedClassValues.Skip(start).Take(end - start).ToArray();122 double[] targetValues = Content.ProblemData.Dataset.GetEnumeratedVariableValues(Content.ProblemData.TargetVariable.Value, rows).ToArray(); 123 double[] predictedValues = Content.GetEstimatedClassValues(rows).ToArray(); 127 124 128 125 for (int i = 0; i < targetValues.Length; i++) { -
branches/HeuristicLab.Classification/HeuristicLab.Problems.DataAnalysis.Classification.Views/3.3/RocCurvesView.cs
r4417 r4469 97 97 98 98 int slices = 100; 99 int samplesStart = Content.ProblemData.TrainingSamplesStart.Value; 100 int samplesEnd = Content.ProblemData.TrainingSamplesEnd.Value; 99 IEnumerable<int> rows; 101 100 102 101 if (cmbSamples.SelectedItem.ToString() == TrainingSamples) { 103 samplesStart = Content.ProblemData.TrainingSamplesStart.Value; 104 samplesEnd = Content.ProblemData.TrainingSamplesEnd.Value; 102 rows = Content.ProblemData.TrainingIndizes; 105 103 } else if (cmbSamples.SelectedItem.ToString() == TestSamples) { 106 samplesStart = Content.ProblemData.TestSamplesStart.Value; 107 samplesEnd = Content.ProblemData.TestSamplesEnd.Value; 104 rows = Content.ProblemData.TestIndizes; 108 105 } else throw new InvalidOperationException(); 109 106 110 double[] estimatedValues = Content.EstimatedValues.Skip(samplesStart).Take(samplesEnd - samplesStart).ToArray(); 111 double[] targetClassValues = Content.ProblemData.Dataset.GetVariableValues(Content.ProblemData.TargetVariable.Value) 112 .Skip(samplesStart).Take(samplesEnd - samplesStart).ToArray(); 107 double[] estimatedValues = Content.GetEstimatedValues(rows).ToArray(); 108 double[] targetClassValues = Content.ProblemData.Dataset.GetEnumeratedVariableValues(Content.ProblemData.TargetVariable.Value, rows).ToArray(); 113 109 double minThreshold = estimatedValues.Min(); 114 110 double maxThreshold = estimatedValues.Max(); … … 122 118 List<ROCPoint> rocPoints = new List<ROCPoint>(); 123 119 int positives = targetClassValues.Where(c => c.IsAlmost(classValue)).Count(); 124 int negatives = samplesEnd - samplesStart- positives;120 int negatives = targetClassValues.Length - positives; 125 121 126 122 for (double lowerThreshold = minThreshold; lowerThreshold < maxThreshold; lowerThreshold += thresholdIncrement) { -
branches/HeuristicLab.Classification/HeuristicLab.Problems.DataAnalysis.Classification.Views/3.3/SymbolicClassificationSolutionView.cs
r4417 r4469 134 134 135 135 private void FillSeriesWithDataPoints(Series series) { 136 int row = Content.ProblemData.TrainingSamplesStart.Value; 137 foreach (double estimatedValue in Content.EstimatedTrainingValues) { 136 List<double> estimatedValues = Content.EstimatedValues.ToList(); 137 foreach (int row in Content.ProblemData.TrainingIndizes) { 138 double estimatedValue = estimatedValues[row]; 138 139 double targetValue = Content.ProblemData.Dataset[Content.ProblemData.TargetVariable.Value, row]; 139 if (targetValue == (double)series.Tag) {140 if (targetValue.IsAlmost((double)series.Tag)) { 140 141 double jitterValue = random.NextDouble() * 2.0 - 1.0; 141 142 DataPoint point = new DataPoint(); … … 145 146 series.Points.Add(point); 146 147 } 147 row++; 148 } 149 150 row = Content.ProblemData.TestSamplesStart.Value; 151 foreach (double estimatedValue in Content.EstimatedTestValues) { 148 } 149 150 foreach (int row in Content.ProblemData.TestIndizes) { 151 double estimatedValue = estimatedValues[row]; 152 152 double targetValue = Content.ProblemData.Dataset[Content.ProblemData.TargetVariable.Value, row]; 153 153 if (targetValue == (double)series.Tag) { … … 159 159 series.Points.Add(point); 160 160 } 161 row++;162 } 161 } 162 163 163 UpdateCursorInterval(); 164 164 } -
branches/HeuristicLab.Classification/HeuristicLab.Problems.DataAnalysis.Classification/3.3/Symbolic/Analyzer/ValidationBestSymbolicClassificationSolutionAnalyzer.cs
r4417 r4469 217 217 int count = (int)((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value); 218 218 if (count == 0) count = 1; 219 IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(seed, validationStart, validationEnd, count); 219 IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(seed, validationStart, validationEnd, count) 220 .Where(row => row < ClassificationProblemData.TestSamplesStart.Value || ClassificationProblemData.TestSamplesEnd.Value <= row); 220 221 221 222 double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity; … … 244 245 if (newBest) { 245 246 double alpha, beta; 246 int trainingStart = ClassificationProblemData.TrainingSamplesStart.Value;247 int trainingEnd = ClassificationProblemData.TrainingSamplesEnd.Value;248 IEnumerable<int> trainingRows = Enumerable.Range(trainingStart, trainingEnd - trainingStart);249 247 SymbolicRegressionScaledMeanSquaredErrorEvaluator.Calculate(SymbolicExpressionTreeInterpreter, bestTree, 250 248 lowerEstimationLimit, upperEstimationLimit, 251 249 ClassificationProblemData.Dataset, targetVariable, 252 trainingRows, out beta, out alpha);250 ClassificationProblemData.TrainingIndizes, out beta, out alpha); 253 251 254 252 // scale tree for solution … … 275 273 276 274 IEnumerable<double> trainingValues = ClassificationProblemData.Dataset.GetEnumeratedVariableValues( 277 ClassificationProblemData.TargetVariable.Value, 278 ClassificationProblemData.TrainingSamplesStart.Value, 279 ClassificationProblemData.TrainingSamplesEnd.Value); 275 ClassificationProblemData.TargetVariable.Value, ClassificationProblemData.TrainingIndizes); 280 276 IEnumerable<double> testValues = ClassificationProblemData.Dataset.GetEnumeratedVariableValues( 281 ClassificationProblemData.TargetVariable.Value, 282 ClassificationProblemData.TestSamplesStart.Value, 283 ClassificationProblemData.TestSamplesEnd.Value); 277 ClassificationProblemData.TargetVariable.Value, ClassificationProblemData.TestIndizes); 284 278 285 279 OnlineAccuracyEvaluator accuracyEvaluator = new OnlineAccuracyEvaluator(); -
branches/HeuristicLab.Classification/HeuristicLab.Problems.DataAnalysis.Classification/3.3/Symbolic/SymbolicClassificationSolution.cs
r4417 r4469 62 62 63 63 List<KeyValuePair<double, double>> estimatedTargetValues = 64 (from row in Enumerable.Range(ProblemData.TrainingSamplesStart.Value, ProblemData.TrainingSamplesEnd.Value - ProblemData.TrainingSamplesStart.Value)64 (from row in ProblemData.TrainingIndizes 65 65 select new KeyValuePair<double, double>( 66 66 estimatedValues[row], … … 131 131 132 132 public IEnumerable<double> EstimatedClassValues { 133 get { 134 double[] classValues = ProblemData.SortedClassValues.ToArray(); 135 foreach (double value in EstimatedValues) { 136 int classIndex = 0; 137 while (value > actualThresholds[classIndex + 1]) 138 classIndex++; 139 yield return classValues[classIndex]; 140 } 141 } 133 get { return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); } 142 134 } 143 135 144 136 public IEnumerable<double> EstimatedTrainingClassValues { 145 get { 146 int start = ProblemData.TrainingSamplesStart.Value; 147 int n = ProblemData.TrainingSamplesEnd.Value - start; 148 return EstimatedClassValues.Skip(start).Take(n).ToList(); 149 } 137 get { return GetEstimatedClassValues(ProblemData.TrainingIndizes); } 150 138 } 151 139 152 140 public IEnumerable<double> EstimatedTestClassValues { 153 get { 154 int start = ProblemData.TestSamplesStart.Value; 155 int n = ProblemData.TestSamplesEnd.Value - start; 156 return EstimatedClassValues.Skip(start).Take(n).ToList(); 141 get { return GetEstimatedClassValues(ProblemData.TestIndizes); } 142 } 143 144 public IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) { 145 double[] classValues = ProblemData.SortedClassValues.ToArray(); 146 foreach (int row in rows) { 147 double value = estimatedValues[row]; 148 int classIndex = 0; 149 while (value > actualThresholds[classIndex + 1]) 150 classIndex++; 151 yield return classValues[classIndex]; 157 152 } 158 153 }
Note: See TracChangeset
for help on using the changeset viewer.