- Timestamp:
- 08/22/10 19:06:32 (14 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/OverfittingAnalyzer.cs
r4272 r4275 112 112 public ILookupParameter<DoubleValue> InitialTrainingQualityParameter { 113 113 get { return (ILookupParameter<DoubleValue>)Parameters["InitialTrainingQuality"]; } 114 } 115 public ILookupParameter<DoubleMatrix> TrainingAndValidationQualitiesParameter { 116 get { return (ILookupParameter<DoubleMatrix>)Parameters["TrainingAndValidationQualities"]; } 117 } 118 public IValueLookupParameter<DoubleValue> PercentileParameter { 119 get { return (IValueLookupParameter<DoubleValue>)Parameters["Percentile"]; } 114 120 } 115 121 #endregion … … 173 179 Parameters.Add(new LookupParameter<ResultCollection>("Results")); 174 180 Parameters.Add(new LookupParameter<DoubleValue>("InitialTrainingQuality")); 181 Parameters.Add(new LookupParameter<DoubleMatrix>("TrainingAndValidationQualities")); 182 Parameters.Add(new ValueLookupParameter<DoubleValue>("Percentile", new DoubleValue(0.1))); 183 175 184 } 176 185 … … 189 198 // Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeValidationQualityLowerLimit", new PercentValue(-0.05))); 190 199 //} 200 if (!Parameters.ContainsKey("TrainingAndValidationQualities")) { 201 Parameters.Add(new LookupParameter<DoubleMatrix>("TrainingAndValidationQualities")); 202 } 203 if (!Parameters.ContainsKey("Percentile")) { 204 Parameters.Add(new ValueLookupParameter<DoubleValue>("Percentile", new DoubleValue(0.1))); 205 } 191 206 } 192 207 … … 237 252 //} 238 253 239 // cut away 0.0 values to make the correlation stronger240 // necessary because R² values of 0.0 are strong outliers241 //int percentile = (int)Math.Round(0.1 * validationQualities.Count);242 //double validationCutOffValue = validationQualities.OrderBy(x => x).ElementAt(percentile);243 //double trainingCutOffValue = qualities.Select(x => x.Value).OrderBy(x => x).ElementAt(percentile);244 double validationCutOffValue = 0.05;245 double trainingCutOffValue = validationCutOffValue; 246 247 double[] validationArr = new double[validationQualities.Count]; 248 double[] trainingArr = new double[validationQualities.Count];249 int arrIndex = 0;250 for (int i = 0; i < validationQualities.Count; i++) {251 if (validationQualities[i] > validationCutOffValue &&252 qualities[i].Value > trainingCutOffValue) {253 validationArr[arrIndex] = validationQualities[i];254 trainingArr[arrIndex] = qualities[i].Value; 255 arrIndex++;256 }257 } 258 double r = alglib.correlation.spearmanrankcorrelation(trainingArr, validationArr, arrIndex);254 // best first (only for maximization 255 var orderedDistinctPairs = (from index in Enumerable.Range(0, qualities.Length) 256 select new { Training = qualities[index].Value, Validation = validationQualities[index] }) 257 .Distinct() 258 .OrderBy(x => -x.Training) 259 .ToList(); 260 261 int n = (int)Math.Round(PercentileParameter.ActualValue.Value * orderedDistinctPairs.Count); 262 263 double[] validationArr = new double[n]; 264 double[] trainingArr = new double[n]; 265 //double[,] qualitiesArr = new double[n, 2]; 266 for (int i = 0; i < n; i++) { 267 validationArr[i] = orderedDistinctPairs[i].Validation; 268 trainingArr[i] = orderedDistinctPairs[i].Training; 269 270 //qualitiesArr[i, 0] = trainingArr[i]; 271 //qualitiesArr[i, 1] = validationArr[i]; 272 } 273 double r = alglib.correlation.spearmanrankcorrelation(trainingArr, validationArr, n); 259 274 TrainingValidationQualityCorrelationParameter.ActualValue = new DoubleValue(r); 260 275 if (InitialTrainingQualityParameter.ActualValue == null) … … 270 285 271 286 OverfittingParameter.ActualValue = new BoolValue(overfitting); 287 //TrainingAndValidationQualitiesParameter.ActualValue = new DoubleMatrix(qualitiesArr); 272 288 return base.Apply(); 273 289 }
Note: See TracChangeset
for help on using the changeset viewer.