- Timestamp:
- 08/11/10 11:53:45 (14 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression/3.3/Symbolic/Evaluators
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression/3.3/Symbolic/Evaluators/SymbolicRegressionNormalizedMeanSquaredErrorEvaluator.cs
r4128 r4190 34 34 [StorableClass] 35 35 public class SymbolicRegressionNormalizedMeanSquaredErrorEvaluator : SingleObjectiveSymbolicRegressionEvaluator { 36 private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";37 private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";38 39 #region parameter properties40 public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {41 get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }42 }43 public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {44 get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }45 }46 #endregion47 #region properties48 public DoubleValue UpperEstimationLimit {49 get { return UpperEstimationLimitParameter.ActualValue; }50 }51 public DoubleValue LowerEstimationLimit {52 get { return LowerEstimationLimitParameter.ActualValue; }53 }54 #endregion55 36 public SymbolicRegressionNormalizedMeanSquaredErrorEvaluator() 56 37 : base() { 57 Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));58 Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));59 38 } 60 39 61 p rotected override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, StringValuetargetVariable, IEnumerable<int> rows) {62 double nmse = Calculate(interpreter, solution, LowerEstimationLimit.Value, UpperEstimationLimit.Value, dataset, targetVariable.Value, rows);40 public override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows) { 41 double nmse = Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows); 63 42 return nmse; 64 43 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression/3.3/Symbolic/Evaluators/SymbolicRegressionScaledNormalizedMeanSquaredErrorEvaluator.cs
r4068 r4190 59 59 } 60 60 61 p rotected override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, StringValuetargetVariable, IEnumerable<int> rows) {61 public override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows) { 62 62 double alpha, beta; 63 double nmse = Calculate(interpreter, solution, LowerEstimationLimit.Value, UpperEstimationLimit.Value, dataset, targetVariable.Value, rows, out beta, out alpha);63 double nmse = Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows, out beta, out alpha); 64 64 AlphaParameter.ActualValue = new DoubleValue(alpha); 65 65 BetaParameter.ActualValue = new DoubleValue(beta);
Note: See TracChangeset
for help on using the changeset viewer.