- Timestamp:
- 05/14/10 14:18:00 (15 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/SymbolicRegressionScaledMeanSquaredErrorEvaluator.cs
r3532 r3807 93 93 private static IEnumerable<double> CalculateScaledEstimatedValues(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, string targetVariable, int start, int end, out double beta, out double alpha) { 94 94 int targetVariableIndex = dataset.GetVariableIndex(targetVariable); 95 var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, Enumerable.Range(start, end - start)).To List();95 var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, Enumerable.Range(start, end - start)).ToArray(); 96 96 var originalValues = dataset.GetVariableValues(targetVariable, start, end); 97 97 CalculateScalingParameters(originalValues, estimatedValues, out beta, out alpha); 98 for (int i = 0; i < estimatedValues. Count; i++)98 for (int i = 0; i < estimatedValues.Length; i++) 99 99 estimatedValues[i] = estimatedValues[i] * beta + alpha; 100 100 return estimatedValues; … … 103 103 104 104 public static void CalculateScalingParameters(IEnumerable<double> original, IEnumerable<double> estimated, out double beta, out double alpha) { 105 var originalEnumerator = original.GetEnumerator(); 106 var estimatedEnumerator = estimated.GetEnumerator(); 105 double[] originalValues = original.ToArray(); 106 double[] estimatedValues = estimated.ToArray(); 107 if (originalValues.Length != estimatedValues.Length) throw new ArgumentException(); 108 var filteredResult = (from row in Enumerable.Range(0, originalValues.Length) 109 let t = originalValues[row] 110 let e = estimatedValues[row] 111 where IsValidValue(t) 112 where IsValidValue(e) 113 select new { Estimation = e, Target = t }) 114 .OrderBy(x => Math.Abs(x.Target)) // make sure small values are considered before large values 115 .ToArray(); 107 116 108 double tMean = original.Average(); 109 double xMean = estimated.Average(); 110 double sumXT = 0; 111 double sumXX = 0; 112 while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) { 113 // calculate alpha and beta on the subset of rows with valid values 114 if (IsValidValue(originalEnumerator.Current) && IsValidValue(estimatedEnumerator.Current)) { 115 double x = estimatedEnumerator.Current; 116 double t = originalEnumerator.Current; 117 // calculate alpha and beta on the subset of rows with valid values 118 originalValues = filteredResult.Select(x => x.Target).ToArray(); 119 estimatedValues = filteredResult.Select(x => x.Estimation).ToArray(); 120 int n = originalValues.Length; 121 if (n > 2) { 122 double tMean = originalValues.Average(); 123 double xMean = estimatedValues.Average(); 124 double sumXT = 0; 125 double sumXX = 0; 126 for (int i = 0; i < n; i++) { 127 // calculate alpha and beta on the subset of rows with valid values 128 double x = estimatedValues[i]; 129 double t = originalValues[i]; 117 130 sumXT += (x - xMean) * (t - tMean); 118 131 sumXX += (x - xMean) * (x - xMean); 119 132 } 133 if (!sumXX.IsAlmost(0.0)) { 134 beta = sumXT / sumXX; 135 } else { 136 beta = 1; 137 } 138 alpha = tMean - beta * xMean; 139 } else { 140 alpha = 0.0; 141 beta = 1.0; 120 142 } 121 if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {122 throw new ArgumentException("Number of elements in estimated and original doesn't match.");123 }124 if (sumXX != 0) {125 beta = sumXT / sumXX;126 } else {127 beta = 1;128 }129 alpha = tMean - beta * xMean;130 143 } 131 144 132 145 private static bool IsValidValue(double d) { 133 return !double.IsInfinity(d) && !double.IsNaN(d) ;146 return !double.IsInfinity(d) && !double.IsNaN(d) && d > -1.0E07 && d < 1.0E07; // don't consider very large or very small values for scaling 134 147 } 135 148 }
Note: See TracChangeset
for help on using the changeset viewer.