- Timestamp:
- 07/04/08 17:30:24 (16 years ago)
- Location:
- trunk/sources/HeuristicLab.StructureIdentification/Evaluation
- Files:
-
- 1 added
- 6 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.StructureIdentification/Evaluation/CoefficientOfDeterminationEvaluator.cs
r155 r363 47 47 double originalDeviationTotalSumOfSquares = 0.0; 48 48 double targetMean = dataset.GetMean(targetVariable); 49 functionTree.PrepareEvaluation(dataset); 49 50 for(int sample = 0; sample < dataset.Rows; sample++) { 50 double estimated = functionTree.Evaluate( dataset,sample);51 double estimated = functionTree.Evaluate(sample); 51 52 double original = dataset.GetValue(sample, targetVariable); 52 53 if(!double.IsNaN(original) && !double.IsInfinity(original)) { -
trunk/sources/HeuristicLab.StructureIdentification/Evaluation/EarlyStoppingMeanSquaredErrorEvaluator.cs
r334 r363 60 60 double errorsSquaredSum = 0; 61 61 double targetMean = dataset.GetMean(targetVariable); 62 functionTree.PrepareEvaluation(dataset); 62 63 for(int sample = trainingStart; sample < trainingEnd; sample++) { 63 double estimated = functionTree.Evaluate( dataset,sample);64 double estimated = functionTree.Evaluate(sample); 64 65 double original = dataset.GetValue(sample, targetVariable); 65 66 if(double.IsNaN(estimated) || double.IsInfinity(estimated)) { -
trunk/sources/HeuristicLab.StructureIdentification/Evaluation/GPEvaluatorBase.cs
r334 r363 57 57 this.totalEvaluatedNodes = scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data; 58 58 double result = Evaluate(scope, functionTree, targetVariable, dataset); 59 scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Quality"), new DoubleData(result))); 59 60 DoubleData quality = GetVariableValue<DoubleData>("Quality", scope, false, false); 61 if(quality == null) { 62 scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Quality"), new DoubleData(result))); 63 } else { 64 quality.Data = result; 65 } 66 60 67 return null; 61 68 } -
trunk/sources/HeuristicLab.StructureIdentification/Evaluation/MCCEvaluator.cs
r191 r363 54 54 double negative = 0; 55 55 double targetMean = dataset.GetMean(targetVariable); 56 functionTree.PrepareEvaluation(dataset); 56 57 for(int sample = 0; sample < dataset.Rows; sample++) { 57 double est = functionTree.Evaluate( dataset,sample);58 double est = functionTree.Evaluate(sample); 58 59 double orig = dataset.GetValue(sample, targetVariable); 59 60 if(double.IsNaN(est) || double.IsInfinity(est)) { -
trunk/sources/HeuristicLab.StructureIdentification/Evaluation/MeanSquaredErrorEvaluator.cs
r334 r363 60 60 } 61 61 62 functionTree.PrepareEvaluation(dataset); 62 63 for(int sample = trainingStart; sample < trainingEnd; sample++) { 63 double estimated = functionTree.Evaluate( dataset,sample);64 double estimated = functionTree.Evaluate(sample); 64 65 double original = dataset.GetValue(sample, targetVariable); 65 66 if(double.IsNaN(estimated) || double.IsInfinity(estimated)) { -
trunk/sources/HeuristicLab.StructureIdentification/Evaluation/VarianceAccountedForEvaluator.cs
r155 r363 57 57 double[] originalTargetVariableValues = new double[dataset.Rows]; 58 58 double targetMean = dataset.GetMean(targetVariable); 59 functionTree.PrepareEvaluation(dataset); 59 60 for(int sample = 0; sample < dataset.Rows; sample++) { 60 double estimated = functionTree.Evaluate( dataset,sample);61 double estimated = functionTree.Evaluate(sample); 61 62 double original = dataset.GetValue(sample, targetVariable); 62 63 if(!double.IsNaN(original) && !double.IsInfinity(original)) {
Note: See TracChangeset
for help on using the changeset viewer.