Changeset 3315 for trunk/sources/HeuristicLab.Problems.TestFunctions
- Timestamp:
- 04/12/10 23:39:40 (15 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.TestFunctions/3.3
- Files:
-
- 12 edited
- 2 moved
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/AckleyEvaluator.cs
r3170 r3315 28 28 namespace HeuristicLab.Problems.TestFunctions { 29 29 /// <summary> 30 /// Ackley Function<br/> 31 /// Domain: [-32.768 , 32.768]^n <br/> 32 /// Optimum: 0.0 at (0, 0, ..., 0) 30 /// The Ackley function as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg 31 /// is highly multimodal. It has a single global minimum at the origin with value 0. 33 32 /// </summary 34 [Item("AckleyEvaluator", "Evaluates the Ackley function on a given point. The optimum of this function is 0 at the origin. ")]33 [Item("AckleyEvaluator", "Evaluates the Ackley function on a given point. The optimum of this function is 0 at the origin. It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.")] 35 34 [StorableClass] 36 35 public class AckleyEvaluator : SingleObjectiveTestFunctionProblemEvaluator { … … 78 77 for (int i = 0; i < point.Length; i++) 79 78 val += point[i] * point[i]; 80 val *= 1.0 / point.Length; 81 val = Math.Sqrt(val); 82 val *= -0.2; 79 val /= point.Length; 80 val = -0.2 * Math.Sqrt(val); 83 81 result -= 20 * Math.Exp(val); 84 82 … … 86 84 for (int i = 0; i < point.Length; i++) 87 85 val += Math.Cos(2 * Math.PI * point[i]); 88 val *= 1.0 /point.Length;86 val /= point.Length; 89 87 result -= Math.Exp(val); 90 88 return (result); -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/BealeEvaluator.cs
r3170 r3315 28 28 namespace HeuristicLab.Problems.TestFunctions { 29 29 /// <summary> 30 /// Beale Function<br/> 31 /// Domain: [-4.5 , 4.5]^2<br/> 32 /// Optimum: 0.0 at (3.0, 0.5) 30 /// The Beale function is defined for 2 dimensions with an optimum of 0 at (3, 0.5). 31 /// It is implemented as described in Moré, J.J., Garbow, B., and Hillstrom, K. 1981. Testing unconstrained optimization software. ACM Transactions on Mathematical Software 7, pp. 136-140, ACM. 33 32 /// </summary> 34 [Item("BealeEvaluator", "Evaluates the Beale function on a given point. The optimum of this function is 0 at (3,0.5). ")]33 [Item("BealeEvaluator", "Evaluates the Beale function on a given point. The optimum of this function is 0 at (3,0.5). It is implemented as described in Moré, J.J., Garbow, B., and Hillstrom, K. 1981. Testing unconstrained optimization software. ACM Transactions on Mathematical Software 7, pp. 136-140, ACM.")] 35 34 [StorableClass] 36 35 public class BealeEvaluator : SingleObjectiveTestFunctionProblemEvaluator { … … 72 71 /// <returns>The result value of the Beale function at the given point.</returns> 73 72 public static double Apply(RealVector point) { 74 return Math.Pow(1.5 - point[0] * (1 - point[1]), 2) + Math.Pow(2.25 - point[0] * (1 - (point[1] * point[1])), 2) + Math.Pow((2.625 - point[0] * (1 - (point[1] * point[1] * point[1]))), 2); 73 double x1 = point[0], x2 = point[1]; 74 double f1 = 1.5 - x1 * (1 - x2); 75 double f2 = 2.25 - x1 * (1 - x2 * x2); 76 double f3 = 2.625 - x1 * (1 - x2 * x2 * x2); 77 return (f1 * f1) + (f2 * f2) + (f3 * f3); 75 78 } 76 79 -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/BoothEvaluator.cs
r3170 r3315 28 28 namespace HeuristicLab.Problems.TestFunctions { 29 29 /// <summary> 30 /// Booth Function<br/> 31 /// Domain: [-10.0 , 10.0]^2<br/> 32 /// Optimum: 0.0 at (1.0, 3.0) 30 /// The Booth function is implemented as described on http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page816.htm, last accessed April 12th, 2010. 33 31 /// </summary> 34 [Item("BoothEvaluator", "Evaluates the Booth function on a given point. The optimum of this function is 0 at (1,3). ")]32 [Item("BoothEvaluator", "Evaluates the Booth function on a given point. The optimum of this function is 0 at (1,3). It is implemented as described on http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page816.htm, last accessed April 12th, 2010.")] 35 33 [StorableClass] 36 34 public class BoothEvaluator : SingleObjectiveTestFunctionProblemEvaluator { … … 72 70 /// <returns>The result value of the Booth function at the given point.</returns> 73 71 public static double Apply(RealVector point) { 74 return Math.Pow(point[0] + 2 * point[1] - 7, 2) + Math.Pow(2 * point[0] + point[1] - 5, 2); 72 return (point[0] + 2 * point[1] - 7) * (point[0] + 2 * point[1] - 7) 73 + (2 * point[0] + point[1] - 5) * (2 * point[0] + point[1] - 5); 75 74 } 76 75 -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/GriewankEvaluator.cs
r3307 r3315 28 28 namespace HeuristicLab.Problems.TestFunctions { 29 29 /// <summary> 30 /// Griewangk Function<br/>31 /// Domain: [-600.0 , 600.0]^n<br/>32 /// Optimum: 0.0 at (0, 0, ..., 0)30 /// The Griewank function is introduced in Griewank, A.O. 1981. Generalized descent for global optimization. Journal of Optimization Theory and Applications 34, pp. 11-39. 31 /// It is a multimodal fitness function in the range [-600,600]^n. 32 /// Here it is implemented as described (without the modifications) in Locatelli, M. 2003. A note on the Griewank test function. Journal of Global Optimization 25, pp. 169-174, Springer. 33 33 /// </summary> 34 [Item("Griewan gkEvaluator", "Evaluates the Griewangk function on a given point. The optimum of this function is 0 at the origin.")]34 [Item("GriewankEvaluator", "Evaluates the Griewank function on a given point. The optimum of this function is 0 at the origin. It is introduced by Griewank A.O. 1981 and implemented as described (without the modifications) in Locatelli, M. 2003. A note on the Griewank test function. Journal of Global Optimization 25, pp. 169-174, Springer.")] 35 35 [StorableClass] 36 public class Griewan gkEvaluator : SingleObjectiveTestFunctionProblemEvaluator {36 public class GriewankEvaluator : SingleObjectiveTestFunctionProblemEvaluator { 37 37 /// <summary> 38 38 /// Returns false as the Griewangk function is a minimization problem. … … 54 54 } 55 55 /// <summary> 56 /// Gets the minimum problem size ( 2).56 /// Gets the minimum problem size (1). 57 57 /// </summary> 58 58 public override int MinimumProblemSize { 59 get { return 2; }59 get { return 1; } 60 60 } 61 61 /// <summary> … … 65 65 get { return int.MaxValue; } 66 66 } 67 68 /// <summary> 69 /// If dimension of the problem is less or equal than 100 the values of Math.Sqrt(i + 1) are precomputed. 70 /// </summary> 71 private double[] sqrts; 67 72 68 73 /// <summary> … … 84 89 85 90 result = result - val + 1; 86 return (result); 91 return result; 92 } 93 94 /// <summary> 95 /// Evaluates the test function for a specific <paramref name="point"/>. It uses an array of precomputed values for Math.Sqrt(i + 1) with i = 0..N 96 /// </summary> 97 /// <param name="point">N-dimensional point for which the test function should be evaluated.</param> 98 /// <param name="sqrts">The precomputed array of square roots.</param> 99 /// <returns>The result value of the Griewangk function at the given point.</returns> 100 private static double Apply(RealVector point, double[] sqrts) { 101 double result = 0; 102 double val = 0; 103 104 for (int i = 0; i < point.Length; i++) 105 result += point[i] * point[i]; 106 result = result / 4000; 107 108 val = Math.Cos(point[0]); 109 for (int i = 1; i < point.Length; i++) 110 val *= Math.Cos(point[i] / sqrts[i]); 111 112 result = result - val + 1; 113 return result; 87 114 } 88 115 … … 94 121 /// <returns>The result value of the Griewangk function at the given point.</returns> 95 122 protected override double EvaluateFunction(RealVector point) { 96 return Apply(point); 123 if (point.Length > 100) 124 return Apply(point); 125 else { 126 if (sqrts == null || sqrts.Length < point.Length) ComputeSqrts(point.Length); 127 return Apply(point, sqrts); 128 } 129 } 130 131 private void ComputeSqrts(int length) { 132 sqrts = new double[length]; 133 for (int i = 0; i < length; i++) sqrts[i] = Math.Sqrt(i + 1); 97 134 } 98 135 } -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/LevyEvaluator.cs
r3170 r3315 28 28 namespace HeuristicLab.Problems.TestFunctions { 29 29 /// <summary> 30 /// Levy Function<br/> 31 /// Domain: [-10.0 , 10.0]^n<br/> 32 /// Optimum: 0.0 at (1.0, 1.0, ..., 1.0) 30 /// The Levy function is implemented as described on http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2056.htm, last accessed April 12th, 2010. 33 31 /// </summary> 34 [Item("LevyEvaluator", "Evaluates the Levy function on a given point. The optimum of this function is 0 at (1,1,...,1). ")]32 [Item("LevyEvaluator", "Evaluates the Levy function on a given point. The optimum of this function is 0 at (1,1,...,1). It is implemented as described on http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2056.htm, last accessed April 12th, 2010.")] 35 33 [StorableClass] 36 34 public class LevyEvaluator : SingleObjectiveTestFunctionProblemEvaluator { … … 80 78 } 81 79 82 s = Math.Pow(Math.Sin(Math.PI * z[1]), 2); 80 s = Math.Sin(Math.PI * z[0]); 81 s *= s; 83 82 84 83 for (int i = 0; i < length - 1; i++) { 85 s += Math.Pow(z[i] - 1, 2) * (1 + 10 * Math.Pow(Math.Sin(Math.PI * z[i] + 1), 2));84 s += (z[i] - 1) * (z[i] - 1) * (1 + 10 * Math.Pow(Math.Sin(Math.PI * z[i] + 1), 2)); 86 85 } 87 86 -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/MatyasEvaluator.cs
r3170 r3315 28 28 namespace HeuristicLab.Problems.TestFunctions { 29 29 /// <summary> 30 /// Matyas Function<br/> 31 /// Domain: [-10.0 , 10.0]^2<br/> 32 /// Optimum: 0.0 at (0.0, 0.0) 30 /// The Matyas function is implemented as described on http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2213.htm, last accessed April 12th, 2010. 33 31 /// </summary> 34 [Item("MatyasEvaluator", "Evaluates the Matyas function on a given point. The optimum of this function is 0 at the origin. ")]32 [Item("MatyasEvaluator", "Evaluates the Matyas function on a given point. The optimum of this function is 0 at the origin. It is implemented as described on http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2213.htm, last accessed April 12th, 2010.")] 35 33 [StorableClass] 36 34 public class MatyasEvaluator : SingleObjectiveTestFunctionProblemEvaluator { -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/RastriginEvaluator.cs
r3170 r3315 25 25 using HeuristicLab.Encodings.RealVectorEncoding; 26 26 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 27 using HeuristicLab.Parameters; 27 28 28 29 namespace HeuristicLab.Problems.TestFunctions { 29 30 /// <summary> 30 /// Rastrigin Function<br/> 31 /// Domain: [-5.12 , 5.12]^n <br/> 32 /// Optimum: 0.0 at (0, 0, ..., 0) 31 /// The generalized Rastrigin function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))) is a highly multimodal function that has its optimal value 0 at the origin. 32 /// It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg. 33 33 /// </summary 34 [Item("RastriginEvaluator", "Evaluates the Rastrigin function on a given point. The optimum of this function is 0 at the origin.")]34 [Item("RastriginEvaluator", "Evaluates the generalized Rastrigin function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))) on a given point. The optimum of this function is 0 at the origin. It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.")] 35 35 [StorableClass] 36 36 public class RastriginEvaluator : SingleObjectiveTestFunctionProblemEvaluator { … … 65 65 get { return int.MaxValue; } 66 66 } 67 /// <summary> 68 /// The parameter A is a parameter of the objective function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))). Default is A = 10. 69 /// </summary> 70 public ValueParameter<DoubleValue> AParameter { 71 get { return (ValueParameter<DoubleValue>)Parameters["A"]; } 72 } 73 /// <summary> 74 /// The parameter A is a parameter of the objective function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))). Default is A = 10. 75 /// </summary> 76 public DoubleValue A { 77 get { return AParameter.Value; } 78 set { if (value != null) AParameter.Value = value; } 79 } 80 81 /// <summary> 82 /// Initializes a new instance of the RastriginEvaluator with one parameter (<c>A</c>). 83 /// </summary> 84 public RastriginEvaluator() 85 : base() { 86 Parameters.Add(new ValueParameter<DoubleValue>("A", "The parameter A is a parameter of the objective function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))). Default is A = 10.", new DoubleValue(10))); 87 } 67 88 68 89 /// <summary> … … 71 92 /// <param name="point">N-dimensional point for which the test function should be evaluated.</param> 72 93 /// <returns>The result value of the Rastrigin function at the given point.</returns> 73 public static double Apply(RealVector point ) {74 double result = 10* point.Length;94 public static double Apply(RealVector point, double a) { 95 double result = a * point.Length; 75 96 for (int i = 0; i < point.Length; i++) { 76 97 result += point[i] * point[i]; 77 result -= 10* Math.Cos(2 * Math.PI * point[i]);98 result -= a * Math.Cos(2 * Math.PI * point[i]); 78 99 } 79 100 return (result); … … 87 108 /// <returns>The result value of the Rastrigin function at the given point.</returns> 88 109 protected override double EvaluateFunction(RealVector point) { 89 return Apply(point );110 return Apply(point, A.Value); 90 111 } 91 112 } -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/RosenbrockEvaluator.cs
r3170 r3315 28 28 namespace HeuristicLab.Problems.TestFunctions { 29 29 /// <summary> 30 /// Rosenbrock Function<br/> 31 /// Domain: [-2.048 , 2.048]^n<br/> 32 /// Optimum: 0.0 at (1, 1, ..., 1) 30 /// The Rosenbrock function features a flat valley in which the global optimum is located. 31 /// It is implemented as generalized Rosenbrock function as for example given in Shang, Y.-W. and Qiu, Y.-H. 2006. A Note on the Extended Rosenbrock Function. Evolutionary Computation 14, pp. 119-126, MIT Press. 33 32 /// </summary> 34 [Item("RosenbrockEvaluator", "Evaluates the Rosenbrock function on a given point. The optimum of this function is 0 at (1,1,...,1).")] 33 [Item("RosenbrockEvaluator", @"The Rosenbrock function features a flat valley in which the global optimum is located. 34 For 2 and 3 dimensions the optimum of this function is 0 at (1,1,...,1), for 4 to 30 dimensions there is an additional local minimum. 35 It is unknown how many local minima there are for dimensions greater than 30. 36 It is implemented as generalized Rosenbrock function as for example given in Shang, Y.-W. and Qiu, Y.-H. 2006. A Note on the Extended Rosenbrock Function. Evolutionary Computation 14, pp. 119-126, MIT Press.")] 35 37 [StorableClass] 36 38 public class RosenbrockEvaluator : SingleObjectiveTestFunctionProblemEvaluator { … … 74 76 double result = 0; 75 77 for (int i = 0; i < point.Length - 1; i++) { 76 result += 100 * (point[i + 1] - point[i] * point[i]) * (point[i + 1] - point[i] * point[i]);77 result += ( 1 - point[i]) * (1 - point[i]);78 result += 100 * (point[i] * point[i] - point[i + 1]) * (point[i] * point[i] - point[i + 1]); 79 result += (point[i] - 1) * (point[i] - 1); 78 80 } 79 81 return result; -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/SchwefelEvaluator.cs
r3170 r3315 28 28 namespace HeuristicLab.Problems.TestFunctions { 29 29 /// <summary> 30 /// Schwefel Function (Sine Root)<br/> 31 /// Domain: [-500.0 , 500.0]^n<br/> 32 /// Optimum: 0.0 at (420.968746453712, 420.968746453712, ..., 420.968746453712) 30 /// The Schwefel function (sine root) is implemented as described in Affenzeller, M. and Wagner, S. 2005. Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms. Ribeiro, B., Albrecht, R. F., Dobnikar, A., Pearson, D. W., and Steele, N. C. (eds.). Adaptive and Natural Computing Algorithms, pp. 218-221, Springer. 33 31 /// </summary> 34 [Item("SchwefelEvaluator", "Evaluates the Schwefel function on a given point. The optimum of this function is 0 at (420.968746453712,420.968746453712,...,420.968746453712).")]32 [Item("SchwefelEvaluator", "Evaluates the Schwefel function (sine root) on a given point. The optimum of this function is 0 at (420.968746453712,420.968746453712,...,420.968746453712). It is implemented as described in Affenzeller, M. and Wagner, S. 2005. Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms. Ribeiro, B., Albrecht, R. F., Dobnikar, A., Pearson, D. W., and Steele, N. C. (eds.). Adaptive and Natural Computing Algorithms, pp. 218-221, Springer.")] 35 33 [StorableClass] 36 34 public class SchwefelEvaluator : SingleObjectiveTestFunctionProblemEvaluator { -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/SphereEvaluator.cs
r3170 r3315 25 25 using HeuristicLab.Encodings.RealVectorEncoding; 26 26 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 27 using HeuristicLab.Parameters; 27 28 28 29 namespace HeuristicLab.Problems.TestFunctions { 29 30 /// <summary> 30 /// Sphere Function<br/> 31 /// Domain: [-5.12 , 5.12]^n<br/> 32 /// Optimum: 0.0 at (0, 0, ..., 0) 31 /// The sphere function is a unimodal function that has its optimum at the origin. 32 /// It is implemented as described in Beyer, H.-G. and Schwefel, H.-P. 2002. Evolution Strategies - A Comprehensive Introduction Natural Computing, 1, pp. 3-52. 33 33 /// </summary> 34 [Item("SphereEvaluator", "Evaluates the Sphere function on a given point. The optimum of this function is 0 at the origin.")]34 [Item("SphereEvaluator", "Evaluates the Sphere function y = C * ||X||^Alpha on a given point. The optimum of this function is 0 at the origin. It is implemented as described in Beyer, H.-G. and Schwefel, H.-P. 2002. Evolution Strategies - A Comprehensive Introduction Natural Computing, 1, pp. 3-52.")] 35 35 [StorableClass] 36 36 public class SphereEvaluator : SingleObjectiveTestFunctionProblemEvaluator { 37 37 /// <summary> 38 /// Returns false as the Rosenbrockfunction is a minimization problem.38 /// Returns false as the Sphere function is a minimization problem. 39 39 /// </summary> 40 40 public override bool Maximization { … … 65 65 get { return int.MaxValue; } 66 66 } 67 /// <summary> 68 /// The parameter C modifies the steepness of the objective function y = C * ||X||^Alpha. Default is C = 1. 69 /// </summary> 70 public ValueParameter<DoubleValue> CParameter { 71 get { return (ValueParameter<DoubleValue>)Parameters["C"]; } 72 } 73 /// <summary> 74 /// The parameter Alpha modifies the steepness of the objective function y = C * ||X||^Alpha. Default is Alpha = 2. 75 /// </summary> 76 public ValueParameter<DoubleValue> AlphaParameter { 77 get { return (ValueParameter<DoubleValue>)Parameters["Alpha"]; } 78 } 79 /// <summary> 80 /// The parameter C modifies the steepness of the objective function y = C * ||X||^Alpha. Default is C = 1. 81 /// </summary> 82 public DoubleValue C { 83 get { return CParameter.Value; } 84 set { if (value != null) CParameter.Value = value; } 85 } 86 /// <summary> 87 /// The parameter Alpha modifies the steepness of the objective function y = C * ||X||^Alpha. Default is Alpha = 2. 88 /// </summary> 89 public DoubleValue Alpha { 90 get { return AlphaParameter.Value; } 91 set { if (value != null) AlphaParameter.Value = value; } 92 } 67 93 94 /// <summary> 95 /// Initializes a new instance of the SphereEvaluator with two parameters (<c>C</c> and <c>Alpha</c>). 96 /// </summary> 97 public SphereEvaluator() 98 : base() { 99 Parameters.Add(new ValueParameter<DoubleValue>("C", "The parameter C modifies the steepness of the objective function y = C * ||X||^Alpha. Default is C = 1.", new DoubleValue(1))); 100 Parameters.Add(new ValueParameter<DoubleValue>("Alpha", "The parameter Alpha modifies the steepness of the objective function y = C * ||X||^Alpha. Default is Alpha = 2.", new DoubleValue(2))); 101 } 68 102 /// <summary> 69 103 /// Evaluates the test function for a specific <paramref name="point"/>. … … 71 105 /// <param name="point">N-dimensional point for which the test function should be evaluated.</param> 72 106 /// <returns>The result value of the Sphere function at the given point.</returns> 73 public static double Apply(RealVector point ) {107 public static double Apply(RealVector point, double c, double alpha) { 74 108 double result = 0; 75 109 for (int i = 0; i < point.Length; i++) 76 110 result += point[i] * point[i]; 77 return result; 111 if (alpha != 2) result = Math.Pow(Math.Sqrt(result), alpha); 112 return c * result; 78 113 } 79 114 … … 85 120 /// <returns>The result value of the Sphere function at the given point.</returns> 86 121 protected override double EvaluateFunction(RealVector point) { 87 return Apply(point );122 return Apply(point, C.Value, Alpha.Value); 88 123 } 89 124 } -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/HeuristicLab.Problems.TestFunctions-3.3.csproj
r3187 r3315 87 87 <Compile Include="Evaluators\BealeEvaluator.cs" /> 88 88 <Compile Include="Evaluators\BoothEvaluator.cs" /> 89 <Compile Include="Evaluators\Griewan gkEvaluator.cs" />89 <Compile Include="Evaluators\GriewankEvaluator.cs" /> 90 90 <Compile Include="Evaluators\LevyEvaluator.cs" /> 91 91 <Compile Include="Evaluators\MatyasEvaluator.cs" /> … … 105 105 <Compile Include="MoveEvaluators\BealeAdditiveMoveEvaluator.cs" /> 106 106 <Compile Include="MoveEvaluators\BoothAdditiveMoveEvaluator.cs" /> 107 <Compile Include="MoveEvaluators\GriewankAdditiveMoveEvaluator.cs" /> 107 108 <Compile Include="MoveEvaluators\ZakharovAdditiveMoveEvaluator.cs" /> 108 109 <Compile Include="MoveEvaluators\SumSquaresAdditiveMoveEvaluator.cs" /> … … 113 114 <Compile Include="MoveEvaluators\RastriginAdditiveMoveEvaluator.cs" /> 114 115 <Compile Include="MoveEvaluators\LevyAdditiveMoveEvaluator.cs" /> 115 <Compile Include="MoveEvaluators\GriewangkAdditiveMoveEvaluator.cs" />116 116 <Compile Include="MoveEvaluators\AdditiveMoveEvaluator.cs" /> 117 117 <Compile Include="MoveEvaluators\RealVectorAdditiveMoveWrapper.cs" /> -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/MoveEvaluators/GriewankAdditiveMoveEvaluator.cs
r3307 r3315 25 25 26 26 namespace HeuristicLab.Problems.TestFunctions { 27 [Item("Griewan gkAdditiveMoveEvaluator", "Class for evaluating an additive move on the Griewangk function.")]27 [Item("GriewankAdditiveMoveEvaluator", "Class for evaluating an additive move on the Griewank function.")] 28 28 [StorableClass] 29 public class Griewan gkAdditiveMoveEvaluator : AdditiveMoveEvaluator {29 public class GriewankAdditiveMoveEvaluator : AdditiveMoveEvaluator { 30 30 public override System.Type EvaluatorType { 31 get { return typeof(Griewan gkEvaluator); }31 get { return typeof(GriewankEvaluator); } 32 32 } 33 33 protected override double Evaluate(double quality, RealVector point, AdditiveMove move) { 34 34 RealVectorAdditiveMoveWrapper wrapper = new RealVectorAdditiveMoveWrapper(move, point); 35 return Griewan gkEvaluator.Apply(wrapper);35 return GriewankEvaluator.Apply(wrapper); 36 36 } 37 37 } -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/MoveEvaluators/RastriginAdditiveMoveEvaluator.cs
r3187 r3315 33 33 protected override double Evaluate(double quality, RealVector point, AdditiveMove move) { 34 34 RealVectorAdditiveMoveWrapper wrapper = new RealVectorAdditiveMoveWrapper(move, point); 35 return RastriginEvaluator.Apply(wrapper );35 return RastriginEvaluator.Apply(wrapper, 10); // FIXME: the parameters have to be wired 36 36 } 37 37 } -
trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/MoveEvaluators/SphereAdditiveMoveEvaluator.cs
r3187 r3315 33 33 protected override double Evaluate(double quality, RealVector point, AdditiveMove move) { 34 34 RealVectorAdditiveMoveWrapper wrapper = new RealVectorAdditiveMoveWrapper(move, point); 35 return SphereEvaluator.Apply(wrapper );35 return SphereEvaluator.Apply(wrapper, 1, 2); // FIXME: the parameters have to be wired. 36 36 } 37 37 }
Note: See TracChangeset
for help on using the changeset viewer.