Changeset 3017 for trunk/sources/HeuristicLab.Encodings.RealVector
- Timestamp:
- 03/14/10 01:06:17 (15 years ago)
- Location:
- trunk/sources/HeuristicLab.Encodings.RealVector/3.3
- Files:
-
- 23 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/BoundsChecker.cs
r2994 r3017 33 33 /// </summary> 34 34 [Item("BoundsChecker", "Checks if all elements of a real vector are inside a given minimum and maximum value. If not, elements are corrected.")] 35 [StorableClass (StorableClassType.Empty)]35 [StorableClass] 36 36 public class BoundsChecker : SingleSuccessorOperator { 37 37 public LookupParameter<DoubleArrayData> RealVectorParameter { -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Creators/UniformRandomRealVectorCreator.cs
r2994 r3017 33 33 /// </summary> 34 34 [Item("UniformRandomRealVectorCreator", "An operator which creates a new random real vector with each element uniformly distributed in a specified range.")] 35 [StorableClass (StorableClassType.Empty)]35 [StorableClass] 36 36 [Creatable("Test")] 37 37 public class UniformRandomRealVectorCreator : RealVectorCreator { -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/AverageCrossover.cs
r2994 r3017 33 33 /// </remarks> 34 34 [Item("AverageCrossover", "The average crossover (intermediate recombination) produces a new offspring by calculating in each position the average of a number of parents. It is implemented as described by Beyer, H.-G. and Schwefel, H.-P. 2002. Evolution Strategies - A Comprehensive Introduction Natural Computing, 1, pp. 3-52.")] 35 [StorableClass (StorableClassType.Empty)]35 [StorableClass] 36 36 public class AverageCrossover : RealVectorCrossover { 37 37 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/BlendAlphaBetaCrossover.cs
r2994 r3017 38 38 /// </remarks> 39 39 [Item("BlendAlphaBetaCrossover", "The blend alpha beta crossover (BLX-a-b) for real vectors is similar to the blend alpha crossover (BLX-a), but distinguishes between the better and worse of the parents. The interval from which to choose the new offspring can be extended more around the better parent by specifying a higher alpha value. It is implemented as described in Takahashi, M. and Kita, H. 2001. A crossover operator using independent component analysis for real-coded genetic algorithms Proceedings of the 2001 Congress on Evolutionary Computation, pp. 643-649.")] 40 [StorableClass (StorableClassType.Empty)]40 [StorableClass] 41 41 public class BlendAlphaBetaCrossover : RealVectorCrossover { 42 42 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/BlendAlphaCrossover.cs
r2994 r3017 37 37 /// </remarks> 38 38 [Item("BlendAlphaCrossover", "The blend alpha crossover (BLX-a) for real vectors creates new offspring by sampling a new value in the range [min_i - d * alpha, max_i + d * alpha) at each position i. Here min_i and max_i are the smaller and larger value of the two parents at position i and d is max_i - min_i. It is implemented as described in Takahashi, M. and Kita, H. 2001. A crossover operator using independent component analysis for real-coded genetic algorithms Proceedings of the 2001 Congress on Evolutionary Computation, pp. 643-649.")] 39 [StorableClass (StorableClassType.Empty)]39 [StorableClass] 40 40 public class BlendAlphaCrossover : RealVectorCrossover { 41 41 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/DiscreteCrossover.cs
r2994 r3017 36 36 /// </remarks> 37 37 [Item("DiscreteCrossover", "Discrete crossover for real vectors: Creates a new offspring by combining the alleles in the parents such that each allele is randomly selected from one parent. It is implemented as described in Beyer, H.-G. and Schwefel, H.-P. 2002. Evolution Strategies - A Comprehensive Introduction Natural Computing, 1, pp. 3-52.")] 38 [StorableClass (StorableClassType.Empty)]38 [StorableClass] 39 39 public class DiscreteCrossover : RealVectorCrossover { 40 40 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/HeuristicCrossover.cs
r2994 r3017 35 35 /// </remarks> 36 36 [Item("HeuristicCrossover", "The heuristic crossover produces offspring that extend the better parent in direction from the worse to the better parent. It is implemented as described in Wright, A.H. (1994), Genetic algorithms for real parameter optimization, Foundations of Genetic Algorithms, G.J.E. Rawlins (Ed.), Morgan Kaufmann, San Mateo, CA, 205-218.")] 37 [StorableClass (StorableClassType.Empty)]37 [StorableClass] 38 38 public class HeuristicCrossover : RealVectorCrossover { 39 39 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/LocalCrossover.cs
r2994 r3017 33 33 /// </remarks> 34 34 [Item("LocalCrossover", @"The local crossover is similar to the arithmetic all positions crossover, but uses a random alpha for each position x = alpha * p1 + (1-alpha) * p2. It is implemented as described in Dumitrescu, D. et al. (2000), Evolutionary computation, CRC Press, Boca Raton, FL., p. 194.")] 35 [StorableClass (StorableClassType.Empty)]35 [StorableClass] 36 36 public class LocalCrossover : RealVectorCrossover { 37 37 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/RandomConvexCrossover.cs
r2994 r3017 33 33 /// </remarks> 34 34 [Item("RandomConvexCrossover", "The random convex crossover acts like the local crossover, but with just one randomly chosen alpha for all crossed positions. It is implementes as described in Dumitrescu, D. et al. (2000), Evolutionary computation, CRC Press, Boca Raton, FL, pp. 193 - 194.")] 35 [StorableClass (StorableClassType.Empty)]35 [StorableClass] 36 36 public class RandomConvexCrossover : RealVectorCrossover { 37 37 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/SimulatedBinaryCrossover.cs
r2994 r3017 35 35 /// </remarks> 36 36 [Item("SimulatedBinaryCrossover", "The simulated binary crossover (SBX) is implemented as described in Deb, K. and Agrawal, R. B. 1995. Simulated binary crossover for continuous search space. Complex Systems, 9, pp. 115-148.")] 37 [StorableClass (StorableClassType.Empty)]37 [StorableClass] 38 38 public class SimulatedBinaryCrossover : RealVectorCrossover { 39 39 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/SinglePointCrossover.cs
r2994 r3017 35 35 /// </remarks> 36 36 [Item("SinglePointCrossover", "Breaks both parent chromosomes at a randomly chosen point and assembles a child by taking one part of the first parent and the other part of the second pard. It is implemented as described in Michalewicz, Z. 1999. Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition, Spring-Verlag Berlin Heidelberg.")] 37 [StorableClass (StorableClassType.Empty)]37 [StorableClass] 38 38 public class SinglePointCrossover : RealVectorCrossover { 39 39 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/UniformAllPositionsArithmeticCrossover.cs
r2994 r3017 35 35 /// </remarks> 36 36 [Item("UniformAllPositionsArithmeticCrossover", "The uniform all positions arithmetic crossover constructs an offspring by calculating x = alpha * p1 + (1-alpha) * p2 for every position x in the vector. Note that for alpha = 0.5 it is the same as the AverageCrossover. It is implemented as described in Michalewicz, Z. 1999. Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition, Spring-Verlag Berlin Heidelberg.")] 37 [StorableClass (StorableClassType.Empty)]37 [StorableClass] 38 38 public class UniformAllPositionsArithmeticCrossover : RealVectorCrossover { 39 39 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Crossovers/UniformSomePositionsArithmeticCrossover.cs
r2996 r3017 35 35 /// </remarks> 36 36 [Item("UniformSomePositionsArithmeticCrossover", "The uniform some positions arithmetic crossover (continuous recombination) constructs an offspring by calculating x = alpha * p1 + (1-alpha) * p2 for a position x in the vector with a given probability (otherwise p1 is taken at this position). It is implemented as described in Dumitrescu, D. et al. (2000), Evolutionary computation, CRC Press, Boca Raton, FL, p. 191. Note that Dumitrescu et al. specify the alpha to be 0.5.")] 37 [StorableClass (StorableClassType.Empty)]37 [StorableClass] 38 38 public class UniformSomePositionsArithmeticCrossover : RealVectorCrossover { 39 39 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Manipulators/BreederGeneticAlgorithmManipulator.cs
r2996 r3017 35 35 /// </remarks> 36 36 [Item("BreederGeneticAlgorithmManipulator", "It is implemented as described by Mühlenbein, H. and Schlierkamp-Voosen, D. 1993. Predictive Models for the Breeder Genetic Algorithm - I. Continuous Parameter Optimization. Evolutionary Computation, 1(1), pp. 25-49.")] 37 [StorableClass (StorableClassType.Empty)]37 [StorableClass] 38 38 public class BreederGeneticAlgorithmManipulator : RealVectorManipulator { 39 39 private static readonly double[] powerOfTwo = new double[] { 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625, 0.001953125, 0.0009765625, 0.00048828125, 0.000244140625, 0.0001220703125, 0.00006103515625, 0.000030517578125 }; -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Manipulators/MichalewiczNonUniformAllPositionsManipulator.cs
r2994 r3017 35 35 /// </remarks> 36 36 [Item("MichalewiczNonUniformOnePositionManipulator", "It is implemented as described in Michalewicz, Z. 1999. Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition, Spring-Verlag Berlin Heidelberg.")] 37 [StorableClass (StorableClassType.Empty)]37 [StorableClass] 38 38 public class MichalewiczNonUniformAllPositionsManipulator : RealVectorManipulator { 39 39 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Manipulators/MichalewiczNonUniformOnePositionManipulator.cs
r2994 r3017 35 35 /// </remarks> 36 36 [Item("MichalewiczNonUniformOnePositionManipulator", "It is implemented as described in Michalewicz, Z. 1999. Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition, Spring-Verlag Berlin Heidelberg.")] 37 [StorableClass (StorableClassType.Empty)]37 [StorableClass] 38 38 public class MichalewiczNonUniformOnePositionManipulator : RealVectorManipulator { 39 39 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Manipulators/PolynomialAllPositionManipulator.cs
r2994 r3017 35 35 /// </remarks> 36 36 [Item("PolynomialAllPositionManipulator", "The polynomial manipulation is implemented as described in Deb, K. & Goyal, M. A. 1996. Combined Genetic Adaptive Search (GeneAS) for Engineering Design Computer Science and Informatics, 26, pp. 30-45. In this operator it is performed on all positions of the real vector.")] 37 [StorableClass (StorableClassType.Empty)]37 [StorableClass] 38 38 public class PolynomialAllPositionManipulator : RealVectorManipulator { 39 39 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Manipulators/PolynomialOnePositionManipulator.cs
r2994 r3017 34 34 /// </remarks> 35 35 [Item("PolynomialOnePositionManipulator", "The polynomial manipulation is implemented as described in Deb, K. & Goyal, M. A. 1996. Combined Genetic Adaptive Search (GeneAS) for Engineering Design Computer Science and Informatics, 26, pp. 30-45. In this operator it is performed on a single randomly chosen position of the real vector.")] 36 [StorableClass (StorableClassType.Empty)]36 [StorableClass] 37 37 public class PolynomialOnePositionManipulator : RealVectorManipulator { 38 38 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Manipulators/SelfAdaptiveNormalAllPositionsManipulator.cs
r2994 r3017 37 37 /// </remarks> 38 38 [Item("SelfAdaptiveNormalAllPositionsManipulator", "This manipulation operator adds a value sigma_i * N(0,1) to the current value in each position i. The values for sigma_i are taken from the strategy vector. It is implemented as described in Beyer, H.-G. and Schwefel, H.-P. 2002. Evolution Strategies - A Comprehensive Introduction Natural Computing, 1, pp. 3-52.")] 39 [StorableClass (StorableClassType.Empty)]39 [StorableClass] 40 40 public class SelfAdaptiveNormalAllPositionsManipulator : RealVectorManipulator { 41 41 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/Manipulators/UniformOnePositionManipulator.cs
r2994 r3017 34 34 /// </remarks> 35 35 [Item("UniformOnePositionManipulator", "Changes a single position in the vector by sampling uniformly from the interval [Minimum, Maximum). It is implemented as described in Michalewicz, Z. 1999. Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition, Spring-Verlag Berlin Heidelberg.")] 36 [StorableClass (StorableClassType.Empty)]36 [StorableClass] 37 37 public class UniformOnePositionManipulator : RealVectorManipulator { 38 38 /// <summary> -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/RealVectorCreator.cs
r2994 r3017 32 32 /// </summary> 33 33 [Item("RealVectorCreator", "A base class for operators creating real-valued vectors.")] 34 [StorableClass (StorableClassType.Empty)]34 [StorableClass] 35 35 public abstract class RealVectorCreator : SingleSuccessorOperator, IRealVectorCreator, IStochasticOperator { 36 36 public ILookupParameter<IRandom> RandomParameter { -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/RealVectorCrossover.cs
r2994 r3017 32 32 /// </summary> 33 33 [Item("RealVectorCrossover", "A base class for operators that perform a crossover of real-valued vectors.")] 34 [StorableClass (StorableClassType.Empty)]34 [StorableClass] 35 35 public abstract class RealVectorCrossover : SingleSuccessorOperator, IRealVectorCrossover, IStochasticOperator { 36 36 public ILookupParameter<IRandom> RandomParameter { -
trunk/sources/HeuristicLab.Encodings.RealVector/3.3/RealVectorManipulator.cs
r2994 r3017 32 32 /// </summary> 33 33 [Item("RealVectorManipulator", "A base class for operators that manipulate real-valued vectors.")] 34 [StorableClass (StorableClassType.Empty)]34 [StorableClass] 35 35 public abstract class RealVectorManipulator : SingleSuccessorOperator, IRealVectorManipulator, IStochasticOperator { 36 36 public ILookupParameter<IRandom> RandomParameter {
Note: See TracChangeset
for help on using the changeset viewer.