Changeset 2879
- Timestamp:
- 02/26/10 17:43:21 (15 years ago)
- Location:
- trunk/sources/HeuristicLab.Permutation/3.3
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Permutation/3.3/CosaCrossover.cs
r2871 r2879 26 26 namespace HeuristicLab.Permutation { 27 27 /// <summary> 28 /// Performs a crossover operation between two permutation arrays by taking randomly chosen 29 /// reverse and forward intervals from the first permutation array inserting 30 /// it in the child on different positions depending on the second permutation array. 28 /// Performs the crossover described in the COSA optimization method. 31 29 /// </summary> 32 /// <remarks>It is implemented as described in Wendt, O. 1994. COSA: COoperative Simulated Annealing - Integration von Genetischen Algorithmen und Simulated Annealing am Beispiel der Tourenplanung. Dissertation Thesis. IWI Frankfurt.<br /> 30 /// <remarks> 31 /// It is implemented as described in Wendt, O. 1994. COSA: COoperative Simulated Annealing - Integration von Genetischen Algorithmen und Simulated Annealing am Beispiel der Tourenplanung. Dissertation Thesis. IWI Frankfurt.<br /> 32 /// The operator actually performs a 2-opt mutation on the first parent, but it uses the second parent to determine which new edge should be inserted. 33 /// Thus the mutation is not random as the second breakpoint depends on the information that is encoded in other members of the population. 34 /// The idea is that the child should not sit right inbetween the two parents, but rather go a little bit from one parent in direction to the other. 33 35 /// </remarks> 34 [Item("CosaCrossover", "An operator which performs a crossover operation between two permutation arrays by taking randomly chosen reverse and forward intervals from the first permutation array inserting it in the child on different positions depending on the second permutation array. It is implemented as described in Wendt, O. 1994. COSA: COoperative Simulated Annealing - Integration von Genetischen Algorithmen und Simulated Annealing am Beispiel der Tourenplanung. Dissertation Thesis. IWI Frankfurt.")]36 [Item("CosaCrossover", "An operator which performs the crossover described in the COSA optimization method. It is implemented as described in Wendt, O. 1994. COSA: COoperative Simulated Annealing - Integration von Genetischen Algorithmen und Simulated Annealing am Beispiel der Tourenplanung. Dissertation Thesis. IWI Frankfurt.")] 35 37 [EmptyStorableClass] 36 38 [Creatable("Test")] 37 39 public class CosaCrossover : PermutationCrossover { 38 40 /// <summary> 39 /// Performs a cross over permutation of <paramref name="parent1"/> and <paramref name="parent2"/> 40 /// by taking first the reverse elements of a randomly chosen interval of parent1 41 /// and inserting it in the result at a position specified by the permutation of parent2. 42 /// The remaining elements to be inserted are taken again from parent1 in the forward direction. 41 /// The operator actually performs a 2-opt mutation on the first parent, but it uses the second parent to determine which new edge should be inserted. 42 /// Thus the mutation is not random as the second breakpoint depends on the information that is encoded in other members of the population. 43 /// The idea is that the child should not sit right inbetween the two parents, but rather go a little bit from one parent in direction to the other. 43 44 /// </summary> 44 45 /// <exception cref="ArgumentException">Thrown when <paramref name="parent1"/> and <paramref name="parent2"/> are not of equal length.</exception> … … 57 58 58 59 int i = 0; 59 while ((i < parent2.Length) && (parent2[i] != parent1[ startIndex])) { // find index of start valuein second permutation60 while ((i < parent2.Length) && (parent2[i] != parent1[crossPoint])) { // find index of cross point in second permutation 60 61 i++; 61 62 } 62 i = (i + 1) % length;63 int j= 0;64 while (( j < parent1.Length) && (parent1[j] != parent2[i])) { // find index of parent2[i] infirst permutation65 j++;63 int newEdge = parent2[(i + 1) % length]; // the number that follows the cross point number in parent2 is the new edge that we want to insert 64 endIndex = 0; 65 while ((endIndex < parent1.Length) && (parent1[endIndex] != newEdge)) { // find index of the new edge in the first permutation 66 endIndex++; 66 67 } 67 endIndex = (j - 1 + length) % length;68 68 69 i = endIndex; 70 j = 0; 71 do { // permutation from end to crosspoint (backwards) 72 result[j] = parent1[i]; 73 i = (i - 1 + length) % length; 74 j++; 75 } while (i != crossPoint); 76 77 i = (endIndex + 1) % length; 78 while (i != crossPoint) { // permutation from end to crosspoint (forwards) 79 result[j] = parent1[i]; 80 i = (i + 1) % length; 81 j++; 69 if (startIndex <= endIndex) { 70 // copy parent1 to child and reverse the order in between startIndex and endIndex 71 for (i = 0; i < parent1.Length; i++) { 72 if (i >= startIndex && i <= endIndex) { 73 result[i] = parent1[endIndex - i + startIndex]; 74 } else { 75 result[i] = parent1[i]; 76 } 77 } 78 } else { // startIndex > endIndex 79 for (i = 0; i < parent1.Length; i++) { 80 if (i >= startIndex || i <= endIndex) { 81 result[i] = parent1[(endIndex - i + startIndex + length) % length]; // add length to wrap around when dropping below index 0 82 } else { 83 result[i] = parent1[i]; 84 } 85 } 82 86 } 83 result[j] = parent1[crossPoint]; // last station: crosspoint84 87 return new Permutation(result); 85 88 } -
trunk/sources/HeuristicLab.Permutation/3.3/Tests/CosaCrossoverTest.cs
r2854 r2879 110 110 TestRandom random = new TestRandom(); 111 111 Permutation parent1, parent2, expected, actual; 112 // The following test is based on an example from Wendt, O. 1994. COSA: COoperative Simulated Annealing - Integration von Genetischen Algorithmen und Simulated Annealing am Beispiel der Tourenplanung. Dissertation Thesis. IWI Frankfurt. 113 random.Reset(); 114 random.IntNumbers = new int[] { 1 }; 115 parent1 = new Permutation(new int[] { 0, 1, 5, 2, 4, 3 }); 116 Assert.IsTrue(parent1.Validate()); 117 parent2 = new Permutation(new int[] { 3, 0, 2, 1, 4, 5 }); 118 Assert.IsTrue(parent2.Validate()); 119 expected = new Permutation(new int[] { 0, 1, 4, 2, 5, 3 }); 120 Assert.IsTrue(expected.Validate()); 121 actual = CosaCrossover.Apply(random, parent1, parent2); 122 Assert.IsTrue(actual.Validate()); 123 Assert.IsTrue(Auxiliary.PermutationIsEqualByPosition(expected, actual)); 124 // The following test is not based on published examples 112 125 random.Reset(); 113 126 random.IntNumbers = new int[] { 4 }; … … 116 129 parent2 = new Permutation(new int[] { 1, 3, 5, 7, 6, 4, 2, 0 }); 117 130 Assert.IsTrue(parent2.Validate()); 118 expected = new Permutation(new int[] { 6, 5, 7, 0, 1, 2, 3, 4});131 expected = new Permutation(new int[] { 7, 6, 5, 3, 4, 2, 1, 0 }); 119 132 Assert.IsTrue(expected.Validate()); 120 133 actual = CosaCrossover.Apply(random, parent1, parent2); 121 134 Assert.IsTrue(actual.Validate()); 122 135 Assert.IsTrue(Auxiliary.PermutationIsEqualByPosition(expected, actual)); 123 136 // The following test is not based on published examples 137 random.Reset(); 138 random.IntNumbers = new int[] { 5 }; 139 parent1 = new Permutation(new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }); 140 Assert.IsTrue(parent1.Validate()); 141 parent2 = new Permutation(new int[] { 4, 3, 5, 1, 0, 9, 7, 2, 8, 6 }); 142 Assert.IsTrue(parent2.Validate()); 143 expected = new Permutation(new int[] { 7, 6, 2, 3, 4, 5, 1, 0, 9, 8 }); 144 Assert.IsTrue(expected.Validate()); 145 actual = CosaCrossover.Apply(random, parent1, parent2); 146 Assert.IsTrue(actual.Validate()); 147 Assert.IsTrue(Auxiliary.PermutationIsEqualByPosition(expected, actual)); 148 124 149 // perform a test when the two permutations are of unequal length 125 150 random.Reset();
Note: See TracChangeset
for help on using the changeset viewer.