- Timestamp:
- 01/13/10 15:43:55 (15 years ago)
- Location:
- trunk/sources/HeuristicLab.GP.StructureIdentification.Networks/3.2
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.GP.StructureIdentification.Networks/3.2/FunctionLibraryInjector.cs
r2616 r2624 94 94 OpenExp openExp = new OpenExp(); 95 95 OpenLog openLog = new OpenLog(); 96 OpenSqrt openSqrt = new OpenSqrt();97 OpenSqr openSqr = new OpenSqr();96 //OpenSqrt openSqrt = new OpenSqrt(); 97 //OpenSqr openSqr = new OpenSqr(); 98 98 Flip flip = new Flip(); 99 99 AdditionF1 addF1 = new AdditionF1(); … … 104 104 List<IFunction> f1Functions = new List<IFunction>() { 105 105 openPar, 106 openExp, openLog, openSqrt, openSqr, flip,106 openExp, openLog, flip, // openSqrt, openSqr, 107 107 addF1, subF1, mulF1, divF1 108 108 }; … … 126 126 SetAllowedSubOperators(openExp, f1Functions); 127 127 SetAllowedSubOperators(openLog, f1Functions); 128 SetAllowedSubOperators(openSqrt, f1Functions); 128 //SetAllowedSubOperators(openSqrt, f1Functions); 129 //SetAllowedSubOperators(openSqr, f1Functions); 129 130 SetAllowedSubOperators(flip, f1Functions); 130 131 SetAllowedSubOperators(addF1, 0, f1Functions); … … 141 142 SetAllowedSubOperators(openDivision, f1Functions); 142 143 SetAllowedSubOperators(openMul, f1Functions); 143 SetAllowedSubOperators(openSqrt, f1Functions);144 144 145 145 if (includeDifferential) -
trunk/sources/HeuristicLab.GP.StructureIdentification.Networks/3.2/HeuristicLab.GP.StructureIdentification.Networks-3.2.csproj
r2617 r2624 86 86 <Compile Include="Properties\AssemblyInfo.cs" /> 87 87 <Compile Include="Symbols\AdditionF1.cs" /> 88 <Compile Include="Symbols\BindF1.cs" />89 <Compile Include="Symbols\BindF2.cs" />90 <Compile Include="Symbols\Id.cs" />91 <Compile Include="Symbols\OpenSqr.cs" />92 88 <Compile Include="Symbols\OpenParameter.cs" /> 93 89 <Compile Include="Symbols\Cycle.cs" /> … … 99 95 <Compile Include="Symbols\OpenAddition.cs" /> 100 96 <Compile Include="Symbols\Flip.cs" /> 101 <Compile Include="Symbols\OpenSqrt.cs" />102 97 <Compile Include="Symbols\OpenExp.cs" /> 103 98 <Compile Include="Symbols\OpenLog.cs" /> -
trunk/sources/HeuristicLab.GP.StructureIdentification.Networks/3.2/NetworkToFunctionTransformer.cs
r2622 r2624 72 72 } 73 73 74 /// <summary> 75 /// applies all tree-transforming meta functions (= cycle and flip) 76 /// precondition: root is a F2 function (possibly cycle) and the tree contains 0 or n flip functions, each branch has an openparameter symbol in the bottom left 77 /// postconditon: root is any F2 function (but cycle) and the tree doesn't contains any flips, each branch has an openparameter symbol in the bottom left 78 /// </summary> 79 /// <param name="tree"></param> 80 /// <returns></returns> 74 81 private static IFunctionTree ApplyMetaFunctions(IFunctionTree tree) { 75 82 IFunctionTree root = ApplyCycles(tree); … … 87 94 return tree; 88 95 } else if (tree.Function is Flip) { 89 return Invert Function(tree.SubTrees[0]);96 return InvertChain(tree.SubTrees[0]); 90 97 } else { 91 98 IFunctionTree tmp = ApplyFlips(tree.SubTrees[0]); 92 tree.RemoveSubTree(0); tree. AddSubTree(tmp);99 tree.RemoveSubTree(0); tree.InsertSubTree(0, tmp); 93 100 return tree; 94 101 } 102 } 103 104 /// <summary> 105 /// inverts and reverses chain of functions. 106 /// precondition: tree is any F1 non-terminal that ends with an openParameter 107 /// postcondition: tree is inverted and reversed chain of F1 non-terminals and ends with an openparameter. 108 /// </summary> 109 /// <param name="tree"></param> 110 /// <returns></returns> 111 private static IFunctionTree InvertChain(IFunctionTree tree) { 112 List<IFunctionTree> currentChain = new List<IFunctionTree>(IterateChain(tree)); 113 // get a list of function trees from bottom to top 114 List<IFunctionTree> reversedChain = new List<IFunctionTree>(currentChain.Reverse<IFunctionTree>().Skip(1)); 115 IFunctionTree openParam = currentChain.Last(); 116 117 // build new tree by inverting every function in the reversed chain and keeping f0 branches untouched. 118 IFunctionTree parent = reversedChain[0]; 119 IFunctionTree invParent = GetInvertedFunction(parent.Function).GetTreeNode(); 120 for (int j = 1; j < parent.SubTrees.Count; j++) { 121 invParent.AddSubTree(parent.SubTrees[j]); 122 } 123 IFunctionTree root = invParent; 124 for (int i = 1; i < reversedChain.Count(); i++) { 125 IFunctionTree child = reversedChain[i]; 126 IFunctionTree invChild = GetInvertedFunction(child.Function).GetTreeNode(); 127 invParent.InsertSubTree(0, invChild); 128 129 parent = child; 130 invParent = invChild; 131 for (int j = 1; j < parent.SubTrees.Count; j++) { 132 invParent.AddSubTree(parent.SubTrees[j]); 133 } 134 } 135 // append open param at the end 136 invParent.AddSubTree(openParam); 137 return root; 138 } 139 140 private static IEnumerable<IFunctionTree> IterateChain(IFunctionTree tree) { 141 while (tree.SubTrees.Count > 0) { 142 yield return tree; 143 tree = tree.SubTrees[0]; 144 } 145 yield return tree; 146 } 147 148 149 private static Dictionary<Type, IFunction> invertedFunction = new Dictionary<Type, IFunction>() { 150 { typeof(AdditionF1), new SubtractionF1() }, 151 { typeof(SubtractionF1), new AdditionF1() }, 152 { typeof(MultiplicationF1), new DivisionF1() }, 153 { typeof(DivisionF1), new MultiplicationF1() }, 154 { typeof(OpenLog), new OpenExp() }, 155 { typeof(OpenExp), new OpenLog() }, 156 //{ typeof(OpenSqr), new OpenSqrt() }, 157 //{ typeof(OpenSqrt), new OpenSqr() }, 158 { typeof(Flip), new Flip()}, 159 { typeof(Addition), new Subtraction()}, 160 { typeof(Subtraction), new Addition()}, 161 { typeof(Multiplication), new Division()}, 162 { typeof(Division), new Multiplication()}, 163 { typeof(Exponential), new Logarithm()}, 164 { typeof(Logarithm), new Exponential()} 165 }; 166 private static IFunction GetInvertedFunction(IFunction function) { 167 return invertedFunction[function.GetType()]; 95 168 } 96 169 … … 117 190 } 118 191 119 private static IFunctionTree InvertFunction(IFunctionTree tree) { 120 IFunctionTree invertedNode = null; 121 if (tree.Function is OpenParameter || tree.Function is Variable) { 122 return tree; 123 } else if (tree.Function is AdditionF1) { 124 invertedNode = (new SubtractionF1()).GetTreeNode(); 125 invertedNode.AddSubTree(tree.SubTrees[1]); 126 } else if (tree.Function is DivisionF1) { 127 invertedNode = (new MultiplicationF1()).GetTreeNode(); 128 invertedNode.AddSubTree(tree.SubTrees[1]); 129 } else if (tree.Function is MultiplicationF1) { 130 invertedNode = (new DivisionF1()).GetTreeNode(); 131 invertedNode.AddSubTree(tree.SubTrees[1]); 132 } else if (tree.Function is SubtractionF1) { 133 invertedNode = (new AdditionF1()).GetTreeNode(); 134 invertedNode.AddSubTree(tree.SubTrees[1]); 135 } else if (tree.Function is OpenExp) { 136 invertedNode = (new OpenLog()).GetTreeNode(); 137 } else if (tree.Function is OpenLog) { 138 invertedNode = (new OpenLog()).GetTreeNode(); 139 } else if (tree.Function is OpenSqrt) { 140 invertedNode = (new OpenSqr()).GetTreeNode(); 141 } else { 142 throw new ArgumentException(); 143 } 144 IFunctionTree invertedTail = ApplyFlips(tree.SubTrees[0]); 145 if (invertedTail.Function is OpenParameter || invertedTail.Function is Variable) { 146 invertedNode.InsertSubTree(0, invertedTail); 147 return invertedNode; 148 } else { 149 return AppendLeft(invertedTail, invertedNode); 150 } 151 } 192 152 193 153 194 private static IFunctionTree AppendLeft(IFunctionTree tree, IFunctionTree node) { … … 158 199 } 159 200 201 /// <summary> 202 /// recieves a function tree with an F2 root and branches containing only F0 functions and transforms it into a function-tree for the given target variable 203 /// </summary> 204 /// <param name="tree"></param> 205 /// <param name="targetVariable"></param> 206 /// <returns></returns> 160 207 private static IFunctionTree TransformExpression(IFunctionTree tree, string targetVariable) { 161 if (tree.SubTrees.Count >= 3) { 162 int targetIndex = -1; 163 IFunctionTree combinator; 164 List<IFunctionTree> subTrees = new List<IFunctionTree>(tree.SubTrees); 165 //while (tree.SubTrees.Count > 0) tree.RemoveSubTree(0); 166 if (HasTargetVariable(subTrees[0], targetVariable)) { 167 targetIndex = 0; 168 combinator = FunctionFromCombinator(tree); 169 } else { 170 for (int i = 1; i < subTrees.Count; i++) { 171 if (HasTargetVariable(subTrees[i], targetVariable)) { 172 targetIndex = i; 173 break; 174 } 208 int targetIndex = -1; 209 IFunctionTree combinator; 210 List<IFunctionTree> subTrees = new List<IFunctionTree>(tree.SubTrees); 211 //while (tree.SubTrees.Count > 0) tree.RemoveSubTree(0); 212 if (HasTargetVariable(subTrees[0], targetVariable)) { 213 targetIndex = 0; 214 combinator = FunctionFromCombinator(tree); 215 } else { 216 for (int i = 1; i < subTrees.Count; i++) { 217 if (HasTargetVariable(subTrees[i], targetVariable)) { 218 targetIndex = i; 219 break; 175 220 } 176 combinator = FunctionFromCombinator(InvertCombinator(tree)); 177 } 178 // not found 179 if (targetIndex == -1) throw new InvalidOperationException(); 180 IFunctionTree targetChain = TransformToFunction(InvertFunction(subTrees[targetIndex])); 181 for (int i = 0; i < subTrees.Count; i++) { 182 if (i != targetIndex) 183 combinator.AddSubTree(TransformToFunction(subTrees[i])); 184 } 185 if (targetChain.Function is Variable) return combinator; 186 else { 187 AppendLeft(targetChain, combinator); 188 return targetChain; 189 } 190 } 191 throw new NotImplementedException(); 192 } 193 194 private static IFunctionTree TransformToFunction(IFunctionTree tree) { 195 if (tree.SubTrees.Count == 0) return tree; 196 else if (tree.Function is AdditionF1) { 197 var addTree = (new Addition()).GetTreeNode(); 198 foreach (var subTree in tree.SubTrees) { 199 addTree.AddSubTree(TransformToFunction(subTree)); 200 } 201 return addTree; 202 } else if (tree.Function is SubtractionF1) { 203 var sTree = (new Subtraction()).GetTreeNode(); 204 foreach (var subTree in tree.SubTrees) { 205 sTree.AddSubTree(TransformToFunction(subTree)); 206 } 207 return sTree; 208 } else if (tree.Function is MultiplicationF1) { 209 var mulTree = (new Multiplication()).GetTreeNode(); 210 foreach (var subTree in tree.SubTrees) { 211 mulTree.AddSubTree(TransformToFunction(subTree)); 212 } 213 return mulTree; 214 } else if (tree.Function is DivisionF1) { 215 var divTree = (new Division()).GetTreeNode(); 216 foreach (var subTree in tree.SubTrees) { 217 divTree.AddSubTree(TransformToFunction(subTree)); 218 } 219 return divTree; 220 } else if (tree.Function is OpenExp) { 221 var expTree = (new Exponential()).GetTreeNode(); 222 expTree.AddSubTree(TransformToFunction(tree.SubTrees[0])); 223 return expTree; 224 } else if (tree.Function is OpenLog) { 225 var logTree = (new Logarithm()).GetTreeNode(); 226 logTree.AddSubTree(TransformToFunction(tree.SubTrees[0])); 227 return logTree; 228 } else if (tree.Function is OpenSqr) { 229 var powTree = (new Power()).GetTreeNode(); 230 powTree.AddSubTree(TransformToFunction(tree.SubTrees[0])); 231 var const2 = (ConstantFunctionTree)(new Constant()).GetTreeNode(); 232 const2.Value = 2.0; 233 powTree.AddSubTree(const2); 234 return powTree; 235 } else if (tree.Function is OpenSqrt) { 236 var sqrtTree = (new Sqrt()).GetTreeNode(); 237 sqrtTree.AddSubTree(TransformToFunction(tree.SubTrees[0])); 238 return sqrtTree; 239 } 240 throw new ArgumentException(); 241 } 242 221 } 222 combinator = FunctionFromCombinator(InvertCombinator(tree)); 223 } 224 // not found 225 if (targetIndex == -1) throw new InvalidOperationException(); 226 227 for (int i = 0; i < subTrees.Count; i++) { 228 if (i != targetIndex) 229 combinator.AddSubTree(subTrees[i]); 230 } 231 if (subTrees[targetIndex].Function is Variable) return combinator; 232 else { 233 IFunctionTree targetChain = InvertF0Chain(subTrees[targetIndex]); 234 AppendLeft(targetChain, combinator); 235 return targetChain; 236 } 237 } 238 239 // inverts a chain of F0 functions 240 // precondition: left bottom is a variable (the selected target variable) 241 // postcondition: the chain is inverted. the target variable is removed 242 private static IFunctionTree InvertF0Chain(IFunctionTree tree) { 243 List<IFunctionTree> currentChain = IterateChain(tree).ToList(); 244 245 List<IFunctionTree> reversedChain = currentChain.Reverse<IFunctionTree>().Skip(1).ToList(); 246 247 // build new tree by inverting every function in the reversed chain and keeping f0 branches untouched. 248 IFunctionTree parent = reversedChain[0]; 249 IFunctionTree invParent = GetInvertedFunction(parent.Function).GetTreeNode(); 250 for (int j = 1; j < parent.SubTrees.Count; j++) { 251 invParent.AddSubTree(parent.SubTrees[j]); 252 } 253 IFunctionTree root = invParent; 254 for (int i = 1; i < reversedChain.Count(); i++) { 255 IFunctionTree child = reversedChain[i]; 256 IFunctionTree invChild = GetInvertedFunction(child.Function).GetTreeNode(); 257 invParent.InsertSubTree(0, invChild); 258 parent = child; 259 invParent = invChild; 260 for (int j = 1; j < parent.SubTrees.Count; j++) { 261 invParent.AddSubTree(parent.SubTrees[j]); 262 } 263 } 264 return root; 265 } 266 267 243 268 private static IFunctionTree InvertCombinator(IFunctionTree tree) { 244 269 if (tree.Function is OpenAddition) { … … 275 300 } 276 301 302 private static Dictionary<Type, IFunction> closedForm = new Dictionary<Type, IFunction>() { 303 {typeof(OpenAddition), new OpenAddition()}, 304 {typeof(OpenSubtraction), new OpenSubtraction()}, 305 {typeof(OpenMultiplication), new OpenMultiplication()}, 306 {typeof(OpenDivision), new OpenDivision()}, 307 {typeof(AdditionF1), new Addition()}, 308 {typeof(SubtractionF1), new Subtraction()}, 309 {typeof(MultiplicationF1), new Multiplication()}, 310 {typeof(DivisionF1), new Division()}, 311 {typeof(OpenExp), new Exponential()}, 312 {typeof(OpenLog), new OpenLog()}, 313 //{typeof(OpenSqr), new Power()}, 314 //{typeof(OpenSqrt), new Sqrt()}, 315 {typeof(OpenParameter), new Variable()}, 316 }; 317 318 /// <summary> 319 /// transforms a tree that contains F2 and F1 functions into a tree composed of F2 and F0 functions. 320 /// precondition: the tree doesn't contains cycle or flip symbols. the tree has openparameters in the bottom left 321 /// postcondition: all F1 and functions are replaced by matching F0 functions 322 /// </summary> 323 /// <param name="tree"></param> 324 /// <param name="targetVariables"></param> 325 /// <returns></returns> 277 326 private static IFunctionTree BindVariables(IFunctionTree tree, IEnumerator<string> targetVariables) { 278 if (tree.Function is OpenParameter && targetVariables.MoveNext()) { 279 var varTreeNode = (VariableFunctionTree)(new Variable()).GetTreeNode(); 327 if (!closedForm.ContainsKey(tree.Function.GetType())) return tree; 328 IFunction matchingFunction = closedForm[tree.Function.GetType()]; 329 IFunctionTree matchingTree = matchingFunction.GetTreeNode(); 330 if (matchingFunction is Variable) { 331 targetVariables.MoveNext(); 332 var varTreeNode = (VariableFunctionTree)matchingTree; 280 333 varTreeNode.VariableName = targetVariables.Current; 281 334 varTreeNode.SampleOffset = ((OpenParameterFunctionTree)tree).SampleOffset; 282 335 varTreeNode.Weight = 1.0; 283 336 return varTreeNode; 337 //} else if (matchingFunction is Power) { 338 // matchingTree.AddSubTree(BindVariables(tree.SubTrees[0], targetVariables)); 339 // var const2 = (ConstantFunctionTree)(new Constant()).GetTreeNode(); 340 // const2.Value = 2.0; 341 // matchingTree.AddSubTree(const2); 284 342 } else { 285 IList<IFunctionTree> subTrees = new List<IFunctionTree>(tree.SubTrees); 286 while (tree.SubTrees.Count > 0) tree.RemoveSubTree(0); 287 foreach (IFunctionTree subTree in subTrees) { 288 tree.AddSubTree(BindVariables(subTree, targetVariables)); 289 } 290 return tree; 291 } 343 foreach (IFunctionTree subTree in tree.SubTrees) { 344 matchingTree.AddSubTree(BindVariables(subTree, targetVariables)); 345 } 346 } 347 348 return matchingTree; 292 349 } 293 350 }
Note: See TracChangeset
for help on using the changeset viewer.